期刊文献+

一类偏微分方程反系数问题的数值解

NUMERICAL SOLUTION OF A KIND OF INVERSE COEFFICIENT PROBLEM FOR PARTIAL DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 在再生核空间中讨论了一类偏微分方程反系数问题的数值求解方法,利用再生核函数的特殊性质建立两个迭代序列,并证明了它们的收敛性,最后给出数值算例来验证此方法的有效性. In this paper,numerical solution of a kind of inverse coefficient problem for partial differential equations in the reproducing kernel space is discussed.Employing the special properties of the reproducing kernel func- tion,we construct two iteration sequence and prove their convergence.Numerical example is studied to test the efficiency of the method.
出处 《哈尔滨师范大学自然科学学报》 CAS 2007年第6期28-31,共4页 Natural Science Journal of Harbin Normal University
关键词 反问题 再生核 迭代 Inverse problem Reproducing kernel Iteration
  • 相关文献

参考文献4

  • 1[1]M.Dehghan.Fully explicit finite difference methods for two-dimensional diffusion with an integral condition.Nonlinear Anal.,2002(48):637 ~650.
  • 2王万斌,闵涛,陈亚文.一维抛物型方程参数识别反问题的数值解法[J].西安理工大学学报,2003,19(3):245-248. 被引量:4
  • 3[4]Yang Lihong,Cui Minggen.New algorithm for a class of nonlinear integro -differential equations in the Reproducing kernel space.Applied Mathematics and Computation,2006,174 (2):942 ~960.
  • 4[5]Songlong,M.G.Cui.Best Approximate Interpolation Operator in Space W.Journal of Computational Mathematics and Application.,1997,33:177~184.

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部