期刊文献+

Effect of particle inertia on temperature statistics in particle-laden homogeneous isotropic turbulence 被引量:8

原文传递
导出
摘要 The fluid temperature statistics along particle trajectories is crucial to under-stand the mechanisms of turbulent non-isothermal or reactive fluid-particle flow,especially for the Lagrangian model of non-isothermal particle-laden turbulent flow.In the present study,direct numerical simulations were utilized to generate temperature field statistics in particle-laden incompressible stationary homogeneous isotropic turbulent flows,which is focused on the effect of particle response time on the Lagrangian statistics of the particle and the fluid temperature seen by particles.It shows that,for the particles withτp/τk<1,the ratio of the fluid intensity seen by particle to fluid temperature intensities deceased asτp/τk increased;while for larger particles(τp/τk>1),the trend is inversed.For small parti-cles(τp/τk<5),the Lagrangian autocorrelation coefficient of the particle temperature R_(p)^(T)decreases as the particle inertia(τp/τk)increases.The trend is reversed for larger particles.The autocorrelation of fluid temperature along the particle path,R_(pf)^(T),decreased as the particle inertia increased.And as the particle inertia increased,the autocorrelation coeffi-cient of the fluid temperature seen by particle decreased more rapidly than that of the particle temperature.The mean temperature gradient contributes to the correlation be-tween the particles velocity component and temperature fluctuations in the direction of the gradient.For the particles withτp/τk<1,the magnitude of the correlation coefficient in-creases as the particle inertia increases,while this value is independent of the particle time constant for larger particles.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2006年第2期210-221,共12页 中国科学(技术科学英文版)
基金 This work was partially supported by the State Key Project of Fundamental Research,Ministry of Science and Technology,China(Grant Nos.G1999022207,2002CB211600) the National Natural Science Foundation of China(Grant Nos.50276021,50576027) Program for New Century Excellent Talents in University,Ministry of Education,China(Grant No.NCET-04-0708).
  • 相关文献

参考文献1

二级参考文献20

  • 1Corssin, S.: Progress report on some turbulent diffusion research.Adv.Geophy. 6:27-52(1959).
  • 2Elghobashi, S, Truesdell, GC.: Direct numerical simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech,242:655-700(1989).
  • 3Squires, KD, Eaton, JK.: Particle response and turbulence modification in isotropic turbulence. Phys. Fluid, A 2:1191-1203(1990).
  • 4Eatonl JK, Fessler, JR.: Preferential Concentration of Particles by Turbulence. Int. J. of Multiphase Flow, 20:169-209(1994).
  • 5Maxey, MR, Rilly, JJ.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26:883-889(1983).
  • 6Chorin, AJ.: Numerical solution of the Navier-Stokes equations.Mathematics of Computation, 22:745-762(1968).
  • 7Coppen, SW.: Particle behavior using direct numerical simulation of isotropic turbulence. [Master Thesis]. Tufts University, MA,USA, 1998.
  • 8Yeung, PK, Pope, SB.: Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech, 207:531-586(1989).
  • 9Hinze, JO.: Turbulence. New York: McGraw-Hill, 1975.
  • 10Comte-Bellot, G, Corssin, S.: Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated isotropic turbulence. J. Fluid Mech. 186:199-208(1971).

共引文献7

同被引文献14

  • 1Eswaran V, Pope S B. Direct numerical simulations of the turbulent mixing of a passive scalar[J]. Phys Fluids, 1988, 31 (3): 506-520.
  • 2Balachander S, Maxey M R. Methods for evaluating fluid velocities in spectral simulations of turbulence [J]. J ComputPhys, 1989, 83(1): 96-125.
  • 3Vedula P, Yeung P K, Fox O. Dynamics of scalar dissipation in isotropic turbulence : a numerical and modeling study[J]. JFluidMech, 2001, 433 (4) : 29-60.
  • 4Brethouwer G, Hunt J, Nieuwstad F, et al. Microstructure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence[J]. J Fluid Mech, 2003, 474(1): 193-225.
  • 5Couzinet A, Bedat B, Simonin O. DNS/DPS of particle temperature correlations in gas-solid turbulent flows [C]// 6th lnt Conference on Multiphase Flow. Germany, 2007.
  • 6Ahlman D, Velter G, Brethouwer G, et al. Direct numerical simulation of nonisothermal turbulent wall jets[J].PhysFluids, 2009, 21(3): 035101.
  • 7Ferrante A, Elghobashi S. On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence[J]. Phys Fluids, 2003, 15 (2) : 315-329.
  • 8Shotorban B, Balachandar S. Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches[J]. Phys Fluids,2006, 18(6): (065105)1-13.
  • 9Marchioli C, Salvetti M V, Soldati A. Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows[J]. Phys Fluids, 2008, 20(4): 040603.
  • 10Sengupta K, Shotorban B, Jacobs G B, et al. Spectral-based simulations of particle-laden turbulent flows[J]. Int J Multiphase Flow, 2009, 35(9): 811-826.

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部