期刊文献+

Study on the nutrient evolution and its controlling factors of Longgan Lake for the last 200 years 被引量:2

Study on the nutrient evolution and its controlling factors of Longgan Lake for the last 200 years
原文传递
导出
摘要 Based on the total phosphorous (TP) concentration in sediment core, the TP concentration in lake water quantitatively reconstructed from fossil diatoms and diatom-TP transfer function in the Longgan Lake during the last 200 years, the temperature and precipitation data from meteorological observation for the last 50 years, the temperatures and precipitation sequences of climate simulation for the last 200 years, as well as the amount of the agricultural phosphate fertilizer in Longgan area for nearly 50 years, the characteristic and the law of the nutrient status evolution were analyzed, and the influence of the climatic factor, the anthropologic factor and the aquatic biology factor on the nutrient status evolution and its mechanism were discussed for the Longgan Lake during the last 200 years. The results showed that, in the nearly 200 years, the TP concentration in the sediment core of the Longgan Lake gradually increased, its range of variation was situated between 330-580 mg/kg, the mean value was 388 mg/kg, a nearly 30-year vibration adjustment period existed at 1950 around. The TP concentration in lake water changed in a different way. Before 1950, it had a slow increasing tendency in fluctuated background, to 1950 around it reached up to the mean value (52.18 μg/L), and vibrated and adjusted around the mean value, then it fast declined, its change range was situated between 37.75-62.33 μg/L. The analyses indicated that, in the centennial time scale, the climate change was the main controlling factor, while in the decadal time scale in the recent 50 years, human activities were the leading factors for the nutrient status evolution of the Longgan Lake. 60% of the variability of the TP concentration in the sediments and 57% of that in lake water were due to human activities. The differentiation between phosphorus concentration in the sediment and in the lake water reflected the response processes and the adjustment abilities of the lake aquatic ecosystems to the lake nutrient level, implying the maintenance and the destruction of the balances between the algae and the aquatic plants, as well as the corresponding accumulating characteristics of the phosphorus. Based on the total phosphorous (TP) concentration in sediment core, the TP concentration in lake water quantitatively reconstructed from fossil diatoms and diatom-TP transfer function in the Longgan Lake during the last 200 years, the temperature and precipitation data from meteorological observation for the last 50 years, the temperatures and precipitation sequences of climate simulation for the last 200 years, as well as the amount of the agricultural phosphate fertilizer in Longgan area for nearly 50 years, the characteristic and the law of the nutrient status evolution were analyzed, and the influence of the climatic factor, the anthropologic factor and the aquatic biology factor on the nutrient status evolution and its mechanism were discussed for the Longgan Lake during the last 200 years. The results showed that, in the nearly 200 years, the TP concentration in the sediment core of the Longgan Lake gradually increased, its range of variation was situated between 330-580 mg/kg, the mean value was 388 mg/kg, a nearly 30-year vibration adjustment period existed at 1950 around. The TP concentration in lake water changed in a different way. Before 1950, it had a slow increasing tendency in fluctuated background, to 1950 around it reached up to the mean value (52.18μg/L), and vibrated and adjusted around the mean value, then it fast declined, its change range was situated between 37.75-62.33μg/L. The analyses indicated that, in the centennial time scale, the climate change was the main controlling factor, while in the decadal time scale in the recent 50 years, human activities were the leading factors for the nutrient status evolution of the Longgan Lake. 60% of the variability of the TP concentration in the sediments and 57% of that in lake water were due to human activities. The differentiation between phosphorus concentration in the sediment and in the lake water reflected the response processes and the adjustment abilities of the lake aquatic ecosystems to the lake nutrient level, implying the maintenance and the destruction of the balances between the algae and the aquatic plants, as well as the corresponding accumulating characteristics of the phosphorus.
出处 《Science China Earth Sciences》 SCIE EI CAS 2006年第z1期193-202,共10页 中国科学(地球科学英文版)
关键词 Longgan Lake NUTRIENT evolution controlling factor climate human activities. Longgan Lake, nutrient evolution, controlling factor, climate, human activities.
  • 相关文献

参考文献7

二级参考文献58

共引文献551

同被引文献60

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部