期刊文献+

Dual Gabriel theorem with applications 被引量:6

Dual Gabriel theorem with applications
原文传递
导出
摘要 We introduce the quiver of a bicomodule over a cosemisimple coalgebra. Applying this to the coradical C0 of an arbitrary coalgebra C, we give an alternative definition of the Gabriel quiver of C, and then show that it coincides with the known Ext quiver of C and the link quiver of C. The dual Gabriel theorem for a coalgebra with a separable coradical is obtained, which generalizes the corresponding result for a pointed coalgebra. We also give a new description of C1 = C0 ∧C C0 of any coalgebra C, which can be regarded as a generalization of the first part of the well-known Taft-Wilson Theorem for pointed coal-gebras. As applications, we give a characterization of locally finite coalgebras via their Gabriel quivers, and a property of the Gabriel quiver of a quasi-coFrobenius coalgebra. We introduce the quiver of a bicomodule over a cosemisimple coalgebra. Applying this to the coradical C0 of an arbitrary coalgebra C, we give an alternative definition of the Gabriel quiver of C, and then show that it coincides with the known Ext quiver of C and the link quiver of C. The dual Gabriel theorem for a coalgebra with a separable coradical is obtained, which generalizes the corresponding result for a pointed coalgebra. We also give a new description of C1 = C0 ∧X C0 of any coalgebra C, which can be regarded as a generalization of the first part of the well-known Taft-Wilson Theorem for pointed coalgebras. As applications, we give a characterization of locally finite coalgebras via their Gabriel quivers, and a property of the Gabriel quiver of a quasi-coFrobenius coalgebra.
出处 《Science China Mathematics》 SCIE 2006年第1期9-26,共18页 中国科学:数学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.10271113&10301033) the Doctoral Foundation of the Chinese Education Ministry.
关键词 quivers cotensor coalgebra quasi-coFrobenius coalgebra. quivers, cotensor coalgebra, quasi-coFrobenius coalgebra.
  • 相关文献

参考文献24

  • 1[1]Auslander,M.,Reiten,I.,Smalφ,S.O.,Representation Theory of Artin Algebras,Cambridge Studies in Adv.Math.36,Cambridge Univ.Press,1995.
  • 2[2]Ringel,C.M.,Tame Algebras and Integral Quadratic Forms,Lecture Notes in Math.1099,Berlin,Heidelberg,New York,Tokyo:Springer-Verlag,1984.
  • 3[3]Chin,W.,Montgomery,S.,Basic coalgebras,Modular interfaces (Reverside,CA,1995),41-47,AMS/IP Stud.Adv.Math.4,Providence,RI:Amer.Math.Soc.,1997.
  • 4[4]Montgomery,S.,Indecomposable coalgebras,simple comodules and pointed Hopf algebras,Proc.of the Amer.Math.Soc.,1995,123:2343-2351.
  • 5[5]Chin,W.,Kleiner,M.,Quinn,D.,Almost split sequences for comodules,J.Algebra,2002,249(1):1-19.
  • 6[6]Simson,D.,On coalgebras of tame comodule type,in Representations of Algebras,Proc.of the Ninth ICRA,Vol.2,Beijing:Beijing Normal University Press,2000.
  • 7[7]Cibils,C.,A quiver quantum group,Comm.Math.Phys.,1993,157:459-477.
  • 8[8]Cibils,C.,Rosso,M.,Algebres des chemins quantique,Adv.Math.,1997,125:171-199.
  • 9[9]Green,E,L.,Solberg,O.,Basic Hopf algebras and quantum groups,Math.Z.,1998,229:45-76.
  • 10[10]Cibils,C.,Rosso,M.,Hopf quivers,J.Algebra,2002,254(2):241-251.

同被引文献4

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部