期刊文献+

Uniform perfectness of the attractor of bi-Lipschitz IFS 被引量:3

Uniform perfectness of the attractor of bi-Lipschitz IFS
原文传递
导出
摘要 In this paper, we prove that the attractor of C1,a bi-Lipschitz IFS in R is uniformly perfect if it is not a singleton. Then we construct an example to show that this does not hold for C1 bi-Lipschitz IFS in Rn. In this paper, we prove that the attractor of C1, α bi-Lipschitz IFS in R is uniformly perfect if it is not a singleton. Then we construct an example to show that this does not hold for C1 bi-Lipschitz IFS in Rn.
出处 《Science China Mathematics》 SCIE 2006年第4期433-438,共6页 中国科学:数学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.10171090,10231040&10301027).
关键词 UNIFORM perfectness ITERATED FUNCTION systems. uniform perfectness, iterated function systems.
  • 相关文献

参考文献8

  • 1[1]Falconer,K.J.,Fractal Geometry:Mathematical Foundations and Applications,New York:John Wiley & Sons,1990.
  • 2[2]Beardon A,F.,Pommerenke,Ch.,The Poincaré metric of plane domains,J.London Math.Soc,1978,18:475-483.
  • 3[3]Pommerenke,Ch.,Uniformly perfect sets and the Poincaré metric,Arch.Math.,1979,32:192-199.
  • 4[4]Hinkkanen,A.,Martin,G.J.,Julia sets of rational semigroups,Math.Z.,1996,222:161-169.
  • 5[5]Mané,R.,da Rocha,L.F.,Julia sets are uniformly perfect,Proc.Amer.Math.Soc.,1992,116:251-257.
  • 6[6]Stankewitz,R.,Uniformly perfect sets,rational semigroups,Kleinian groups and IFS's,Proc.Amer.Math.Soc.,2000,128:2569-2575.
  • 7[7]Stankewitz,R.,Uniformly perfect analytic and conformal attractor sets,Bull.London Math.Soc.,2001,33:320 330.
  • 8[8]Xie,F.,Yin,Y.,Sun,Y.,Uniform perfectness of self-affine sets,Proc.Amer.Math.Soc.,2003,131:3053-3057.

同被引文献14

  • 1WU Min.The multifractal spectrum of some Moran measures[J].Science China Mathematics,2005,48(8):1097-1112. 被引量:5
  • 2Min Wu.The multifractal spectrum of some moran measures[J]. Science in China Series A: Mathematics . 2005 (8)
  • 3Zhi-Ying Wen,Li-Feng Xi.Relations among whitney sets, self-similar arcs and quasi-arcs[J]. Israel Journal of Mathematics . 2003 (1)
  • 4Falconer K J,Marsh D T.Classification of quasi-circles by Hausdorff dimension. Nonlinearity . 1989
  • 5Cooper D,Pignataro T.On the shape of Cantor sets. J Diff Geom . 1988
  • 6Rao H,Ruan H J,Xi L F.Lipschitz equivalence of self-similar sets. C R Acad Sci Paris Ser I Math (Comptes Rendus Mathematique) . 2006
  • 7Hall P,,Heyde C C.Martingale Limit Theory and Its Application. . 1980
  • 8Falconer K J,Marsh D T.On the Lipschitz equivalence of Cantor sets. Mathematika . 1992
  • 9Rao H,Wen Z Y.A class of self-similar fractals with overlap structure. Adv in Appl Math . 1998
  • 10Petersen K.Ergodic Theory. . 1983

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部