期刊文献+

Solvable quadratic Lie algebras 被引量:1

Solvable quadratic Lie algebras
原文传递
导出
摘要 A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way. A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.
作者 ZHU Linsheng
出处 《Science China Mathematics》 SCIE 2006年第4期477-493,共17页 中国科学:数学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.10571119) the Natural Science Funds from Morningside Center of Mathematics,Chinese Academy of Sciences the Eduction Department of Jiangsu Province.
关键词 SOLVABLE QUADRATIC LIE algebra cohomlogy CARTAN subalgebra. solvable quadratic Lie algebra, cohomlogy, Cartan subalgebra.
  • 相关文献

参考文献12

  • 1[1]Nippi,C.R.,Witten,E.,A WZW model based on a non-semi-simple group,Phys.Rev.Lett.1993,71:3751-3753.
  • 2[2]Sfetsos,K.,Gauging a non-semi-simple WZW model,Phys.Lett.B,1994,324:335-346.
  • 3[3]Mohammedi,N.,On bosonic and supersymmetric current algebras for nonsemisimple group,Phys.Lett.B,1994,325:371-381.
  • 4[4]Medina,A.,Revoy,Ph.,Algebres de Lie et produit scalarie invariant,Ann.Sci.Ecl.Norm.Sup.1985,533:553-561.
  • 5[5]Favre,G.,Santhroubane,L.J.,Symmetric,invariant,non-degenerate bilinear form on a Lie algebra,J.Algebra,1987,105:451-464.
  • 6[6]Figueroa-O'Farrill,J.S.,Stanciu,S.,On the structure of symmetric self-dual Lie algebras,J.Math.Phys.,1996,37:4121-4134.
  • 7[7]Benayadi,S.,A new characterization of semisimple Lie algebras,Proc.Amer.Math.Soc.,1997,125:685-691.
  • 8[8]Benayadi,S.,Structures de certaines algebres de Lie quadratiques.Comm.in Algebras,1995,23(10):3867-3887.
  • 9[9]Bordemann,M.,Nondegenerate invariant bilinear forms on nonassociative algebras,Acta Math.Univ.Comenianae,1997,LⅩⅥ(2):151 201.
  • 10[10]Zhu,L.S.,Meng,D.J.,Quadratic Lie algebras and commutative associative algebras,Comm.in Algebras,2003,29:2249-2268.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部