期刊文献+

P_(4k-1)-factorization of bipartite multigraphs 被引量:1

原文传递
导出
摘要 LetλKm,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A Pν-factorization ofλKm,n is a set of edge-disjoint Pν-factors ofλKm,n which partition the set of edges ofλKm,n. Whenνis an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a Pν-factorization ofλKm,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true forν= 3. In this paper we will show that the conjecture is true whenν= 4k-1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization ofλKm,n is (1) (2k-1)m≤2kn, (2) (2k-1)n≤2km, (3)m + n = 0 (mod 4k-1), (4)λ(4k-1)mn/[2(2k-1)(m + n)] is an integer. LetλKm,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A Pv-factorization of λKm,n is a set of edge-disjoint Pv-factors of λKm,n which partition the set of edges of λKm,n. When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a Pv-factorization of λKm,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true for v= 3. In this paper we will show that the conjecture is true when v= 4k- 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization of λKm,n is (1) (2κ - 1)m ≤ 2kn, (2) (2k - 1)n ≤ 2km, (3) m + n ≡0 (mod 4κ - 1), (4) λ(4κ - 1)mn/[2(2κ - 1)(m + n)] is an integer.
出处 《Science China Mathematics》 SCIE 2006年第7期961-970,共10页 中国科学:数学(英文版)
基金 This work was supported by the National Natural Science Foundation of China (Grant No. 10571133).
关键词 BIPARTITE multigraph factor factorization. bipartite multigraph, factor, factorization.
  • 相关文献

参考文献2

二级参考文献4

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部