期刊文献+

Dirac structures on protobialgebroids 被引量:2

Dirac structures on protobialgebroids
原文传递
导出
摘要 Protobialgebroids include several kinds of algebroid structures such as Lie algebroid,Lie bialgebroid, Lie quasi-bialgebroid, etc. In this paper, the Dirac theories are generalized from Lie bialgebroid to protobialgebroid. We give the integrable conditions for a maximally isotropic subbundle being a Dirac structure for a protobialgebroid by the notion of a characteristic pair. From the integrable conditions, we found out that the Dirac structure has closed relations with the twisting of a protobialgebroid. At last, some special cases of the Dirac structures for protobialgebroids are discussed. Protobialgebroids include several kinds of algebroid structures such as Lie algebroid, Lie bialgebroid, Lie quasi-bialgebroid, etc. In this paper, the Dirac theories are generalized from Lie bialgebroid to protobialgebroid. We give the integrable conditions for a maximally isotropic subbundle being a Dirac structure for a protobialgebroid by the notion of a characteristic pair. From the integrable conditions, we found out that the Dirac structure has closed relations with the twisting of a protobialgebroid. At last, some special cases of the Dirac structures for protobialgebroids are discussed.
机构地区 LMAM
出处 《Science China Mathematics》 SCIE 2006年第10期1341-1352,共12页 中国科学:数学(英文版)
关键词 LIE bialgebroid protobialgebroid characteristic pair Courant algebroid twisted POISSON manifold supermanifold. Lie bialgebroid, protobialgebroid, characteristic pair, Courant algebroid,twisted Poisson manifold, supermanifold
  • 相关文献

参考文献14

  • 1[1]Varadarajan V S.Series:Courant Lecture Notes,Supersymmetry for Mathematicians:An Introduction.American Mathematical Society,2004,11
  • 2[2]Roytenberg D.Quasi-Lie bialgebroids and twisted Poisson manifolds.Lett Math Phys,2002,61:123-137
  • 3[3]Roytenberg D.On the structure of graded symplectic supermanifolds and Courant algebroids.In:Voronv T,ed.Quantization,Poisson Brackets and Beyond(Manchester,2001),Contemp Math,2002,315:169-185
  • 4[4]Kosmann-Schwarzbach Y.Quasi,twisted,and all that...in Poisson geometry and Lie algebroid theory.Progress in Mathematics,2005,232:363-389
  • 5[5]Liu Z-J,Weinstein A,Xu P.Beyond Lie algebroids:Dirac structures and Poisson homogeneous spaces.Common Math Phys,1998,192:121-144
  • 6[6]Kosmann-Schwarzbach Y.Derived brackets.Lett Math Phys,2004,69:61-87
  • 7[7]Kosmann-Schwarzbach Y.Jacobian quasi-bialgebra.In:Gotay M,Marsden J E,Moncrief V,eds.Mathematical Aspects of Classical Field Theory,Contemp Math,1992,132:459-489
  • 8[8](S)evera P,Weinstein A.Poisson geometry with a 3 form background.Prog Theor Phys Suppl,2001,144:145-154
  • 9[9]Bangoura M,Kosmann-Schwarach Y.The double of a Jacobian quasi-bialgbra.Lett Math Phys,1993,28:13-29
  • 10[10]Liu Z-J.Some Remarks on Dirac Structures and Poisson Reductions.Banach Center Publ,2000,51:165-173

同被引文献4

  • 1Roytenberg D. On the structure of graded symplectic supermanifolds and eourant algebroids[J]. Quantization, Poisson brackets and beyond, 2001,315:169- 185.
  • 2Bangoura M, Kosmann-Schwarach Y. The double of a Jacobian quasi-bialgbra[J]. Lett. Math. phys. , 1993(28) :13-29.
  • 3Kosmann-Schwarzbach. Y. Quasi,twisted,and all that... in Poisson geometry and Lie algebroid theory[J]. The breadth of symplectic and poisson geometry, 2005,232:363-389.
  • 4LIR Z J. Some remarks on dirac structures and poisson reduetions[J]. Banach Center Publ,2000,51: 165-173.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部