期刊文献+

The representations of two types of functionals on L^∞(Ω,F) and L^∞(Ω,F,P) 被引量:5

The representations of two types of functionals on L~∞(Ω,F) and L~∞(Ω,F,P)
原文传递
导出
摘要 This article gives the representations of two types of real functionals on Z∞(Ω,F) or L∞(Ω,F,P) in terms of Choquet integrals. These functionals are comonotonically subadditive and comonotonically convex, respectively. This article gives the representations of two types of real functionals on L∞(Ω,F)or L∞(Ω,F,P) in terms of Choquet integrals. These functionals are comonotonically subadditive and comonotonically convex, respectively.
出处 《Science China Mathematics》 SCIE 2006年第10期1376-1382,共7页 中国科学:数学(英文版)
基金 This work was supported by the National Natural Science Foundation of China (Grant No. 10571167).
关键词 Choquet integral comonotonically subadditive comonotonically convex. Choquet integral, comonotonically subadditive, comonotonically convex
  • 相关文献

参考文献8

  • 1[1]Artzner P,Delbaen F,Eber J M,Heath D.Thinking coherently.RISK,1997,10:68-71
  • 2[2]Artzner P,Delbaen F,Eber J M,Heath D.Coherent measures of risk.Math Finance,1999,9(3):203-228
  • 3[3]Delbaen F.Coherent risk measures.Lecture notes,Pisa.2001
  • 4[4]Delbaen F.Coherent measures of risk on general probability spaces.In:Advancees in Finance and Stochastics.Berlin:Springer-Verlag,2002,1-37
  • 5[5]F(o)llmer H,Schied A.Convex measures of risk and trading constraints.Finance and Stochastics,2002,6(4):429-447
  • 6[6]Frittelli M,Rosazza Gianin E.Putting order in risk measures.J Banking Finance,2002,26(7):1473-1486
  • 7[7]Huber P J,ed.Robust Statistics.New York:Wiley,1981
  • 8[8]Denneberg D.Non-additive Measure and Integral.Boston:Kluwer Academic Publishers,1994

同被引文献24

  • 1GUO TieXin,CHEN XinXiang.Random duality[J].Science China Mathematics,2009,52(10):2084-2098. 被引量:3
  • 2SONG YongSheng,YAN JiaAn.An overview of representation theorems for static risk measures[J].Science China Mathematics,2009,52(7):1412-1422. 被引量:2
  • 3GUO TieXin Key Laboratory of Information Mathematics and Behavior of Ministry of Education, Department of Mathemat-ics, Beihang University, Beijing 100083, China.The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani-mulian theorem in complete random normed modules to stratification structure[J].Science China Mathematics,2008,51(9):1651-1663. 被引量:18
  • 4Ying Hu.On Jensen’s inequality for g-expectation and for nonlinear expectation[J]. Archiv der Mathematik . 2005 (6)
  • 5Fran?ois Coquet,Ying Hu,Jean Mémin,Shige Peng.Filtration-consistent nonlinear expectations and related g-expectations[J]. Probability Theory and Related Fields . 2002 (1)
  • 6Denneberg D.Non-additive Measure and Integration. . 1994
  • 7Peng S.Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Processes and Their Applications . 2008
  • 8Song Y,Yan J.The representations of two types of functionals on L∞(Ω, F) and L∞(Ω, F, P ). Science in China Series A Mathematics Physics Astronomy Technological Sciences . 2006
  • 9Jia G.On n-dimensional Jensen inequalities for g-expectation and nonlinear expectation, and their Applications. . 2007
  • 10Coquet F,Hu Y,Memin J,et al.Filtration consistent nonlinear expectations and related g-expectation. Probab Theory & Related Fields . 2002

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部