期刊文献+

Local symmetries of finite type hypersurfaces in C^2 Dedicated to Professor Sheng GONG on the occasion of his 75th birthday 被引量:2

Local symmetries of finite type hypersurfaces in C^2 Dedicated to Professor Sheng GONG on the occasion of his 75th birthday
原文传递
导出
摘要 The first part of this paper gives a complete description of local automorphism groups for Levi degenerate hypersurfaces of finite type in C2. It is also proved that, with the exception of hypersurfaces of the form v = |z|k, local automorphisms are always determined by their 1-jets. Using this result, the second part describes special normal forms which by an additional normalization eliminate the nonlinear symmetries of the model and allows to decide effectively about local equivalence of two hypersurfaces given in this normal form.
作者 KOL■ Martin
出处 《Science China Mathematics》 SCIE 2006年第11期1633-1641,共9页 中国科学:数学(英文版)
关键词 normal form finite type hypersurfaces local equivalence problem finite jet determination stability group. normal form, finite type hypersurfaces, local equivalence problem, finite jet determination, stability group.
  • 相关文献

参考文献26

  • 1[1]Kolá(r) M.Normal forms for hypersurfaces of finite type in C2.Math Res Lett,2005,12:897-910
  • 2[2]Poincaré H.Les fonctions analytique de deux variables et la représentation conforme.Rend Circ Mat Palermo,1907,23:185-220
  • 3[3]Chern S S,Moser J.Real hypersurfaces in complex manifolds.Acta Math,1974,133:219-271
  • 4[4]Barletta E,Bedford E.Existence of proper mappings from domains in C2.Indiana Univ Math J,1990,2:315-338
  • 5[5]Beloshapka V K,Ezhov V V.Normal forms and model hypersurfaces in C2,preprint
  • 6[6]Ebenfelt P.Finite jet determination of holomorphic mappings at the boundary.Asian J Math,2001,5(4):637-662
  • 7[7]Ebenfelt P,Lamel B,Zaitsev D.Degenerate Real Hypersurfaces in C2 with Few Automorphisms.ESI preprint No 1804,www.esi.ac.at
  • 8[8]Juhlin R.Normal forms and convergence of formal CR mappings.PhD-thesis.San Diego:University of California,2005
  • 9[9]Stanton N.A normal form for rigid hypersurfaces in C2.Amer J Math,1991,113:877-910
  • 10[10]Webster S M.On the Moser normal form at a non-umbilic point.Math Ann,1978,233:97-102

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部