期刊文献+

New series of odd non-congruent numbers 被引量:1

原文传递
导出
摘要 We determine all square-free odd positive integers n such that the 2-Selmer groups Sn and (S)n of the elliptic curve En: y2 = x(x - n)(x - 2n) and its dual curve (E)n: y2 =x3 + 6nx2 + n2x have the smallest size: Sn = {1}, (S)n = {1, 2, n, 2n}. It is well known that for such integer n, the rank of group En(Q) of the rational points on En is zero so that n is a non-congruent number. In this way we obtain many new series of elliptic curves En with rank zero and such series of integers n are non-congruent numbers. We determine all square-free odd positive integers n such that the 2-Selmer groups Sn and Sn of the elliptic curve En: y2 = x(x -n)(x - 2n) and its dual curve En: y2 = x3 + 6nx2 + n2x have the smallest size: Sn = {1}, Sn = {1,2,n,2n}. It is well known that for such integer n, the rank of group En(Q) of the rational points on En is zero so that n is a non-congruent number. In this way we obtain many new series of elliptic curves En with rank zero and such series of integers n are non-congruent numbers.
出处 《Science China Mathematics》 SCIE 2006年第11期1642-1654,共13页 中国科学:数学(英文版)
基金 This work was supported by the National Scientific Research Project 973 of China(Grant No.2004 CB 3180004) the National Natural Science Foundation of China(Grant No.60433050).
关键词 CONGRUENT number ELLIPTIC curves rank 2-descent ODD graph. congruent number, elliptic curves, rank, 2-descent, odd graph.
  • 相关文献

参考文献17

  • 1[1]Feng K.Non-congruent numbers,odd graphs and the Birch-Swinnerton-Dyer conjecture.Acta Arith,1996,80:71-83
  • 2[2]Feng K,Xiong M.On elliptic curves y2 = x3-n2x with rank zero.J Number Theory,2004,109:1-26
  • 3[3]Genocchi A.Sur l'impossibilité de quelques égalités doubles.C R Acad Sci Paris,1874,78:423-436
  • 4[4]Goto T.A study on the Selmer groups of elliptic curves with a rational 2-torsion.Doctoral thesis:Kyushu University,2002
  • 5[5]Iskra B.Non-congruent numbers with arbitrarily many prime factors congruent to 3 modulo 8.Proc Japan Acad,1996,72:168-169
  • 6[6]Lagrange J.Construction d'une table de nombres congruents.Bull Soc Math France,1977,49-50(Suppl):125-130
  • 7[7]Lagrange J.Nombres congruents et courbes elliptiques,Sémin.Delange-Pisot-Poitou,1974/75(1):16-17
  • 8[8]Lemmermeyer F.Some families of non-congruent numbers.Acta Arith,2003,110:15-36
  • 9[9]Nemenzo F R.All congruent number less than 40000.Proc Japan Acad,1998,74:29-31
  • 10[10]Serf P.Congruent numbers and elliptic curves.In:Computational Number Theory.Debrecen:de Gruyter,1991:227-238

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部