期刊文献+

Almost sure central limit theorems for random functions 被引量:2

Almost sure central limit theorems for random functions
原文传递
导出
摘要 Let {Xn,-∞< n <∞} be a sequence of independent identically distributed random variables with EX1 = 0, EX12 = 1 and let Sn =∑k=1∞Xk, and Tn = Tn(X1,…,Xn) be a random function such that Tn = ASn + Rn, where supn E|Rn| <∞and Rn = o(n^(1/2)) a.s., or Rn = O(n1/2-2γ) a.s., 0 <γ< 1/8. In this paper, we prove the almost sure central limit theorem (ASCLT) and the function-typed almost sure central limit theorem (FASCLT) for the random function Tn. As a consequence, it can be shown that ASCLT and FASCLT also hold for U-statistics, Von-Mises statistics, linear processes, moving average processes, error variance estimates in linear models, power sums, product-limit estimators of a continuous distribution, product-limit estimators of a quantile function, etc. Let {Xn,-∞< n <∞} be a sequence of independent identically distributed be a random function such that Tn = ASn+ Rn,where supnE|Rn|<∞ and Rn = o(√n)a.s.,or Rn = O(n1/2-2γ) a.s.,0 <γ< 1/8.In this paper,we prove the almost sure central limit theorem (ASCLT) and the function-typed almost sure central limit theorem (FASCLT) for the random function Tn.As a consequence,it can be shown that ASCLT and FASCLT also hold for U-statistics,Von-Mises statistics,linear processes,moving average processes,error variance estimates in linear models,power sums,product-limit estimators of a continuous distribution,product-limit estimators of a quantile function,etc.
出处 《Science China Mathematics》 SCIE 2006年第12期1788-1799,共12页 中国科学:数学(英文版)
基金 This work was partially supported by the Natural Science Foundation of Zhejiang Province(Grant No.101016) the National Natural Science Foundation of China(Grant No.10471126).
关键词 statistics random function almost sure central LIMIT theorem logarithm average. statistics, random function, almost sure central limit theorem, logarithm average.
  • 相关文献

参考文献9

  • 1[1]Brosamler G.An almost sure central limit theorem.Math Proc Cambridge Phil Soc,1988,104:561-574
  • 2[2]Schatte P.On strong versions of the central limit theorem.Math Nachr,1988,137:249-256
  • 3[3]Lacey M T,Philipp W.A note on the almost sure central limit theorem.Statist Probab Lett,1990,9:201-205
  • 4[4]Berkes I,Csáki E,Horváth L.Almost sure central limit theorems under minimal conditions.Statist Probab Lett,1998,37:67-76
  • 5[5]Wang F,Cheng S H.Almost sure central limit theorem for U-statistics.Chin Ann Math,2003,24A:735-742,(in Chinese)
  • 6[6]Serfling R J.Approximation Theorems of Mathematical Statictics.New York:John-Wiley and Sons,Inc,1980
  • 7[7]Chen X R.Limit property for U-statistics and Von-Mises statistics.Science in China,1980,10(6):522-532,(in Chinese)
  • 8[8]Bai Z D.Some problems relating to the consistency of LS estimates of regression coefficients in linear models.Acta Math Sinica Chinese Series,1984,27:704-710
  • 9[9]Lo S H,Singh K.The product-limit estimator and the bootstrap:some asymptotic reperesentations.Probability Theory and Related Field,1985,71:455-465

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部