摘要
利用Laplace变换求解常微分方程,偏微分方程;计算一些广义积分甚至包括含参变量的广义积分;再利用Laplace变换的卷积定理推导两个相互独立的随机变量和的概率密度。
We solove ordinary differential equation and partial differential equation by Laplace transformation. We calculate some improper integral and parameter improper integral by it. We derive also probability density of the sum of independent r. v. by its convolution theorem.
出处
《宿州学院学报》
2006年第5期67-69,共3页
Journal of Suzhou University
关键词
LAPLACE变换
常微分方程
偏微分方程
广义积分
概率密度
Laplace transformation
ordinary differential equation
partial differential equation
improper integral
probability density