期刊文献+

带紧扰动的增生算子的特征值问题 被引量:2

ON THE EIGENVALUE PROBLEM FOR ACCRETIVE OPERATORS WITH COMPACT PERTURBATIONS
下载PDF
导出
摘要 运用Leray-Schauder度的理论研究了带紧扰动的增生算子的特征值问题,并得到了正、负的特征值.所得结果改进并推广了Guan和Kartsatos的某些结果,他们只是得到了正的特征值. By using Leray-Schauder degree,some results of the eigenvalue problem for accretive operators with compact perturbations are given.These results which have positive and negative eigenvalue improve and generalize those given by Guan and Kartsatos which only have positive ones.
作者 谭丽 范江华
出处 《广西师范大学学报(自然科学版)》 CAS 2004年第2期37-40,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 广西青年科学基金资助项目(0007002)
关键词 泛函分析 特征值问题 增生算子 M-增生算子 紧扰动 LERAY-SCHAUDER度理论 functional analysis eigenvalue problem accretive operators m-accretive operators compact perturbations Leray-Schauder degree
  • 相关文献

参考文献9

  • 1Browder F E. Nonlinear mappings of nonexpansive and accretive type in Banach spaces[J]. Bull Amer Math Soc,1967,73:875-882.
  • 2Kato T. Nonlinear semigroups and evolution equations[J].Math Soc Japan,1967,18(19):508-520.
  • 3Barbu V. Nonlinear semigroups and differential equations in Banaeh spaces[M]. Leyden :Noordhoff International Publishing, 1976.
  • 4Morosanu G. Nonlinear evolution equations[M]. Bucharest :Edirura Academici,1988.
  • 5Browder F E. Nonlinear operators and nonlinear equations of evolution in Banach spaces[A]. Proceedings of symposia in pune mathematics [C ]. Providence, RI : American Mathematical Society, 1976.1- 308.
  • 6罗桂烈.某类有放养的捕食链非自治系统的周期解[J].广西师范大学学报(自然科学版),2002,20(2):39-42. 被引量:9
  • 7Guan Z,Kartsatos A G. On the eigenvalue problem for perturbation of nonlinear accretive and monotone operators in Banach spaces[J]. Nonl Anal, 1996,27 (2): 125-141.
  • 8周海云,陈东青.带紧扰动的单调算子的特征值问题[J].数学物理学报(A辑),1998,18(3):330-334. 被引量:2
  • 9Fitzpatrick P M,Petryshyn W V. Positive eigenvalues for nonlinear multivalued noneompact operators with applications to differential operators[J]. J Diff Eqns, 1976,22: 428-441.

二级参考文献3

  • 1Guan Z,Nonlinear Anal,1996年,27卷,2期,125页
  • 2周海云,军械工程学院学报,1992年,4卷,3期,236页
  • 3郭大钧,非线性泛函分析,1985年

共引文献9

同被引文献19

  • 1ROCKAFELLAR R T. Monotone operators and the proximal point algorithms[J]. SIAM J Contr Optim, 1976, 14 (5) :877-898.
  • 2FAN Jiang-hua. A Mann type iterative scheme for variational inequalities in noncompact subsets of Banach spaces[J]. J Math Anal Appl, 2008,337 (2) : 1041-1047.
  • 3LI Min,YUAN Xiao-Ming. An APPA-based descent method with optimal step-sizes for monotone variational inequalities[J], Euro J of Operat Res, 2008,186(2):486-495.
  • 4LI Min. A new generalized APPA for maximal monotone operators[J]. Appl Math Lett, 2008,21(2):181-186.
  • 5VERMA R U. Proximal point algorithms and generalized nonlinear variational problems[J]. Appl Math and Comp, 2007,187:535-543.
  • 6BURACHIK R S,SCHEIMBERG S,SVAITER B F. Robustness of the hybrid extragradient proximal-point algorithm[J]. J Optim Theory Appl, 2001,111:117-136.
  • 7HAN De-ren,HE Bing-sheng, A new accuracy criterion for approximate proximal point algorithms[J]. J Math Anal Appl, 2001,263 (2) : 343-354.
  • 8TAA A. The Maximality of the sum of monotone operators in Banach space and an application to hemivariational inequalities[J]. J Math Anal Appl, 1996,204 (3) : 693-700.
  • 9Coddington E A, Levinson N. Theory of Ordinary Differential Equations [ M ]. New York : Academic Press, 1955:208 - 220.
  • 10Eastham M S P. The Spectral Theory of Periodic Differential Equation[ M]. London: The Universities Press, 1973:1 -18.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部