期刊文献+

NH_3与H_2之比对碳纳米尖端阵列形成的影响

Influences of Ratios of NH_3 to H_2 on Formation of Carbon Nanotip Arrays
下载PDF
导出
摘要 以CH4,NH3和H2为反应气体,利用等离子体增强热丝化学气相沉积系统在沉积有碳膜的Si上制备了碳纳米尖端阵列。利用原子力显微镜和扫描电子显微镜分别对碳膜和碳纳米尖端进行了研究,发现碳膜的表面粗糙不平,有许多凸起,在NH3与H2的比例为1/7和1/1时,可形成碳纳米尖端阵列,利用有关等离子体刻蚀理论对碳纳米尖端阵列的形成进行了分析,结果表明,只有在这两个比例下,离子对碳膜内凸起两侧有相同的溅射刻蚀速率,因此可形成碳纳米尖端阵列。 Carbon nanotip arrays were grown from carbon films deposited on silicon substrates by plasma-enhanced hot filament chemical vapor deposition using CH4, NH3 and H2 as reaction gases. The carbon film and carbon nanotip arrays were investigated by atomic force microscopy and scanning electron microscopy, respectively. It is found that the carbon film is rough surface with a lot of spikes and the carbon nanotip arrays can be formed at 1/7 and 1/1 ratios of NH3 to H2, respectively. The formation of the carbon nanotip arrays is analyzed by the theory related to plasma sputter-etching and the result indicates that the formation results from the same sputter-etching rates of ions on both sides of the spikes.
出处 《微细加工技术》 EI 2006年第4期29-33,共5页 Microfabrication Technology
关键词 碳纳米尖端阵列 溅射刻蚀 化学气相沉积 carbon nanotip arrays sputter-etching chemical vapor deposition
  • 相关文献

参考文献15

  • 1[1]Jang J,Chung S J,and Kim H S.Self-organized carbon nanotips[J].Appl Phys Lett,2001,79:1682-1684.
  • 2[2]Huang C J,Chih Y K,Hwang J,et al.Field emission from amorphous-carbon nanotips on copper[J].J Appl Phys,2003,94:6796-6799.
  • 3[3]Wang B B,Lee Soonil,Yan H,et al.Study on the mechanism of self-organized carbon nanotips without catalyst by plasma-enhanced hot filament chemical vapor deposition[J].Appl Sur Sci,2005,245:21-25.
  • 4王必本,徐幸梓,张兵.等离子体增强热丝CVD生长碳纳米尖端的研究[J].物理学报,2006,55(2):941-946. 被引量:4
  • 5[5]Tsai C L,Chen C F,Wu L K.Bias effect on the growth of carbon nanotips using microwave plasma chemical vapor deposition[J].Appl Phys Lett,2002,81:721-723.
  • 6[6]Wang B B,Wang W L,Liao K J,et al.Experimental and theoretical studies of diamond nucleation on silicon by biased hot filament chemical vapor deposition[J].Phys Rev,2001,B63:85412-85424.
  • 7[7]Ferrari A C,Robertson J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Phys Rev,2000,B 61:14095-14107.
  • 8[8]Raizer Y P.Glow Discharge Physics[M].Berlin:Springer-Verlag,1991.
  • 9[10]Sedla(c)ek M.Electron Physics of Vacuum and Gaseous Devices[M].New York:John Wiley & Sons,Inc,1996.
  • 10[11]Shulga V I.Density and binding effects in low-energy sputtering[J].Nucl Instr and Meth in Phys Rev,2001,B 179:485-496.

二级参考文献21

  • 1Iijima S 1991 Nature 354 56
  • 2Jiang X,Jia C L 2002 Appl.Phys.Lett.80 2269
  • 3Merkulov V I,Guillorn M A,Lowndes D H,Simpson M L,Voelkl E 2001 Appl.Phys.Lett.79 1178
  • 4Wang B B,Gu C Z,Dou Y,Wang G J,Li H J,Zhu M K 2003 Chin.Phys.12 1459
  • 5Jang J,Chung S J,Kim H S 2001 Appl.Phys.Lett.79 1682
  • 6Tsai C L,Chen C F,Wu L K 2002 Appl.Phys.Lett.81 721
  • 7Zhang G,Jiang X,Wang E 2003 Science 300 472
  • 8Ferrai A C,Robertson J 2000 Phys.Rev.B 61 14095
  • 9Wang BB,Lee Soonil,YanH,GuCZ,Wang B 2005 Appl.Sur.Sci.245 21
  • 10Floro J A,Rossnagel S M,Robinson R S 1983 J.Vac.Sci.Technol.A 1 1398

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部