期刊文献+

一类生物复制网络的极限性质 被引量:2

The Limit Property for Some Biological Copy-Network
下载PDF
导出
摘要 本文考虑生物网络中一类复制模型度分布的极限性质.利用组合知识和概率论中鞅方法,讨论了度分布的大数定律和中心极限定理,为生物学家研究生物内部系统机制提供理论基础. In this paper,we consider the limit property of degree distribution for some biology copy-network.In virtue of the knowledge of combination and the technique of martingale.We discuss the law of large numbers and central limit theorem for degree distribution.This work can offer a theoretical foundation for the research of biological interior system mechanism.
作者 毛明志 王艳
出处 《应用数学》 CSCD 北大核心 2009年第3期527-533,共7页 Mathematica Applicata
基金 中国地质大学(武汉)优秀青年教师资助计划项目(CUGQNL0816)
关键词 生物复制模型 度分布 大数定律 中心极限定理 Biological copy-network Law of large numbers Central limit theorem
  • 相关文献

参考文献7

  • 1Fan C,,Lu L L,Gergory Dewey T,David Galas J.Duplication models for biological networks[].JCom-putBiolo.2003
  • 2Han D,Zhou Q.The continuous time markov processes and degree distribution of evolving[].CommunMathComputChem.2006
  • 3Albert R,Barabasi AL.Statistical mechanics of complex networks[].Reviews of Modern Physics.2002
  • 4Barabasi A L,Albert R.Emergence of scaling in random networks[].Science.1999
  • 5Wagner,A.Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization[].Proceedings of the National Academy of Sciences of the United States of America.1994
  • 6R. Kumar,P. Raghavan,S. Rajagopalan,D. Sivakumar,A. S. Tomkins,and E. Upfal.Stochastic models for the Web graph[].Proceedings of the st Annual IEEE Symposium on the Foundations of Computer Science Institute of Electrical and Electronics Engineers.2000
  • 7Hall,P.,Heyde,C. C. Martingale Limit Theory and Its Applications . 1980

同被引文献10

  • 1Albert R, Barabasi A L. Statistical mechanics of complex networks[J]. Rev. Mod. Phys. 2002,74: 47-97.
  • 2Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286: 509-512.
  • 3Sereich S, Morters P. Random networks with sublinear preferential attachment: Degree evolutions[J]. Ele. I. Prob.. 2009.14(43), 1222-1267.
  • 4Freedman D A. On tail probabilities for martingales[J]. Ann. Proba. 1975,3 (1) : 100-118.
  • 5Kallenberg O. Foundations of Modern Probability[M]. Belling:Academic Press of China,2001.
  • 6Albert R, Barabasi A L. Statistical mechanics of complex networks[J]. Rev. Mod. Phys. , 2002,74.. 47-97.
  • 7Chung F,LU Linyuan L, Dewey T G, Galas D. Duplication models for biological networks[J]. J. Comp. Bio. ,2003,10(5) :677-687.
  • 8Heyde C C. On central limit and iterated logarithm supplements to the martingales convergence theorem [J]. J. Applied Prob. ,1977,14: 758-775.
  • 9Mori T F. The maximum degree of the Barabasi-Alber random tree[J]. Combin. Probab. Comput. , 2005, 14: 339-348.
  • 10毛明志,王艳.一类生物复制网络度分布的重对数律[J].应用数学,2011,24(4):778-783. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部