摘要
本文讨论了如下一类渐近线性椭圆方程组{-Δu-μΔv=g(x,v),-Δv-λΔu=f(x,u),x∈Ω,u=v=0,x∈Ω在H01(Ω)×H01(Ω)中至少存在一个非负非平凡的解对(u,v),其中Ω是RN中的一个光滑有界区域,f(x,t)和g(x,t)是Ω×R上的连续函数并且在无穷远处渐近线性.
In this paper,we show that the semilinear elliptic systems of the form{-Δu-μΔv=g(x,v),-Δv-λΔu=f(x,u),x∈Ω,u=v=0,x∈Ωpossess at least one nonnegative nontrivial solution pair(u,v)∈H10(Ω)×H10(Ω),where Ω is a smooth bounded domain in RN,f(x,t)and g(x,t)are continuous functions on Ω×R and asymptotically linear at infinity.
出处
《应用数学》
CSCD
北大核心
2009年第3期603-609,共7页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of SCUEC(yzz08001)
the National Natural Science Foundation of China(10571175,10631030)
关键词
非负解
渐近线性
椭圆方程组
Nonnegative solution
Asymptotically linear
Elliptic system