期刊文献+

分数阶扩散方程及数值解

Fractional Diffusion Equation and Its Numerical Solutions
下载PDF
导出
摘要 该文对布莱克-斯库勒模型中的股票价格,运用莱维分布中判断时间非独立变量有非独立、稳定增值的充分必要条件处理求解缺陷,然后利用无风险利率对其进行简化,求得此股票价格的一个解,随之运用拉普拉斯变换及所得到的股票价格的解来研究欧体期权价值所满足的方程,试图得到欧体期权价值方程的数值解。 In this paper,introducing a sort of equation,we use Lévy process,risk-free rate to analyze this model,and then get a solution,then using Laplace transform and the solution which got from this model to express the equation which satisfies to the European-style,and try to analyze this diffusion equation with the property of fraction calculus and the fraction calculus called Grunwald-Letnikov to get the numerical solution.
出处 《杭州电子科技大学学报(自然科学版)》 2009年第4期75-77,共3页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省自然科学基金资助项目(Y7080457)
关键词 无风险利率 莱维分布 分数阶扩散方程 risk-free rate Lévy process fractional diffusion equation
  • 相关文献

参考文献2

二级参考文献8

  • 1F. Huang,F. Liu.The fundamental solution of the space-time fractional advection-dispersion equation[J].Journal of Applied Mathematics and Computing (-).2005(1-2)
  • 2Meerschaert M,Benson A D,Scheffler H P,Baeumer B.Stochastic solution of space-time fractional diffusion equations[].Physical Review.2002
  • 3Liu F,Anh V,Turner I.Numerical solution of space fractional Fokker-Planck equation[].J Comp and Appl Math.2004
  • 4Mainardi F,Luchko Y,Pagnini G,Paradisi G.The Fundamental solution of the space-time fractional diffusion[].Frac Calc Appl Anal.2001
  • 5Liu F,Anh V,Turner I.Numerical Solution of the Space Fractional Fokker-Planck Equation[].ANZIAM J.2004
  • 6Fix J G,Roop P J.Least squares finite element solution of a fractional order two-point boundary value problem[].Computers and Mathematics With Applications.2004
  • 7Liu F,Shen S,Anh V,Turner I.Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation[].ANZIAM J.2005
  • 8Meerschaert M,Tadjeran C.Finite difference approximations for fractional advection-dispersion flow equations[].J Comp and Appl Math.2004

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部