期刊文献+

失神经皮肤植入神经后新生轴突再生的机制探讨 被引量:2

Expression and its significance of S- 100 proteins in skin after nerve implantation
下载PDF
导出
摘要 目的 观察感觉神经植入术后皮肤内 S- 100蛋白染色的变化情况。方法 利用已建立的猴失神经皮肤手指模型,再神经植入后 1、 3、 5、 8和 12个月对手指指腹皮肤进行免疫组织化学染色,光镜下观察结果。结果 正常皮肤中,有少量 S- 100蛋白染色阳性的神经纤维和感觉小体,感觉神经植入后,阳性标记物明显增强,尤其在神经植入后 3~ 5个月时,免疫反应阳性的增加显著,随后略有减弱, 12个月后接近正常皮肤的染色情况。结论 植入的神经恢复了感觉神经结构和功能的完整性,可以使感觉小体获得神经再支配。 S- 100蛋白在维持神经正常的功能方面发挥重要的作用,神经损伤后雪旺氏细胞对神经的再生影响与 S- 100蛋白密切相关。 Objective To observe the changes of S- 100 proteins in skin after sensory nerve implantation. Method The model of denervated skin of monkey hand was used. 1,3,5,8 and 12 month after nerve was implanted into monkey digital skin, selected sample of digital pulp, stained the samples with immunohistology and observed under the light microscope. Result There were S- 100 proteins immunoreactivity(IR) positive nerve fibers and sensory corpusles in normal skin, displays strong immunoreactivity for all antigens examined, the number of immunostaining nerve fibers and corpuscles as well as the intensity of IR for the antigen increased in cutaneous sensory after nerve implantation, especially at 3, 5 month after operation, then became weaker and weaker with time prolongation of nerve regeneration, got close to normal pattern at 12 month after nerve implantation. Conclusion The implanted nerve might recover the functional and structural integrity of sensory fibers and innervate the degenerative corpuscles. S- 100 may be an important role in maintaining normal nerve function, and activated Schwann cells for nerve regeneration after nerve injury.
出处 《中国组织工程研究与临床康复》 CAS CSCD 2001年第16期44-45,共2页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 国家自然基金资助课题 (39370964)
关键词 神经植入 S-100蛋白 神经再生 雪旺氏细胞 : nerve implantation S- 100 proteins nerve regeneration Schwann cell
  • 相关文献

参考文献7

二级参考文献45

共引文献58

同被引文献17

  • 1[3]Ahmed FJ, Pienkowski TP, Baas PW. Regional differences in microtubule dynamics in the axon. J Neurosci 1993; 13:856 -66
  • 2[4]Hirokawa N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr Opin Cell Biol 1994; 6:74 -81
  • 3[5]Hoffman PN. Expression of GAP-43, a rapidly transported growth-associated protein, and class Ⅱ beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons. J Neurosci 1989; 9:893 -7
  • 4[6]Gallo G, Letourneau PC. Different contributions of microtubule dynamics and transport to the growth of axons and collateral sprouts. J Neurosci 1999; 19:3860 - 73
  • 5[7]Paglini G, Peris L, Mascotti F, et al. Tau protein function in axonal formation. Neurochem Res 2000; 25:37 - 42
  • 6[8]Baas PW, Ahmad FJ. Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction. Trends Cell Biol 2001; 11:244 -9
  • 7[9]Black MM, Slaughter T, Moshiach S, et al. Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 1996; 16:3601 - 19
  • 8[10]Gallo G, Letourneau PC. Localized sources of neurotrophins initiate axon collateral sprouting. J Neurosci 1998; 18:5403 - 14
  • 9[11]Joshi HC. Microtubule dynamics in living cells. Curr Opin Cell Biol 1998; 10:35 - 44
  • 10[12]Kempf M, Clement A, Faissner A, et al. Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 1996; 16:5583 -92

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部