期刊文献+

用于电控旋翼的带襟翼翼型关键参数研究

PARAMETER STUDY OF THE AIRFOIL WITH FLAP USED FOR ELECTRICAL CONTROLLED ROTOR
下载PDF
导出
摘要 为满足电控旋翼的设计需要,首先给出了可计及襟翼移轴补偿影响的带襟翼翼型的综合时域非定常气动力计算模型。以此为基础,对襟翼弦长比和移轴补偿率这两个重要参数进行了分析。结果表明:增大移轴补偿率会减小升力系数;俯仰力矩系数随襟翼弦长比增大将出现最值,该最值与移轴补偿率有关;襟翼铰链力矩系数随襟翼弦长比增加迅速增大,而增加移轴补偿率则可大幅度减少襟翼铰链力矩系数。对于电控旋翼而言,襟翼弦长比取0.2左右,移轴补偿取0.25左右,可以取得较为满意的效果。 In order to satisfy the design of Electrical Controlled Rotor(ECR),a synthetic unsteady aerodynamic model in time do- main is presented to predict the aerodynqmic force and moment of the airfoil with a flap.This model can take account of the effect of flap nose overhang.Based on the validated model,parameter analysis about flap chord ration and nose overhang is executed and some conclusions are obtained.The lift coefficient is decreasing with the increase of flap nose overhang.Increasing the flap chord ration,the pitching moment coefcient will appear a peak which is related with nose overhang,while the flap hinge moment coeffi- cient will go up rapidly.In order to reduce the flap hinge moment,a nose overhang should be adopted.For the application to Elec- trical Controlled Rotor,the value of 0.2 chord ration and 0.25 nose overhang would be suitable.
出处 《直升机技术》 2004年第3期18-22,共5页 Helicopter Technique
关键词 电控旋翼 襟翼 非定常气动力 弦长比 移轴补偿 electrical controlled rotor flap unsteady aerodynamic chord ration nose overhang
  • 相关文献

参考文献9

  • 1[2]Aiken E; Ormiston R; Young L A.Futrue Directions in Rotorcraft Technology at Ames Research Center[C].American Helicopter Society 56th Annual Forum,May 2~4,2000.
  • 2[3]Hassan A A;Straub F K.Experimental/Numerical Evaluation of Integral Trailing Edge Flaps for Helicopter Rotor Application[C].American Helicopter Society 56th Annual Forum,May 2~4,2000:84~102.
  • 3[4]Shen J W,Chopra I.A Parametric Design Study for a Swashplateless Helicopter Rotor with Trailing-Edge Flaps[C].American Helicopter Society 58th Annual Forum,June,2002.
  • 4[5]Shen J W,Chopra I.Acuation Requirements for A Swashplateless Helicopter Control System with Trailing-Edge Flaps[C].AIAA-2002-1444,April 22~25,2002.
  • 5[6]Theodorsen T,Garrick I E.Nonstationary Flow About a WingAileron-Tab Combination Including Aerodynamic Balance[R].NACA-736,1942:129-138.
  • 6[7]Leishman J G,Beddoes T S.A Generalized Model for Airfoil Unsteady Aerodynamic Behavior and Dynamic Stall Using the Indicial Method[C].American Helicopter Society 42nd Annual Forum,June,1986:243~265.
  • 7[8]Hariharan N,Leishman J G.Unsteady Aerodynamics of a Flapped Airfoil in Subsonic Flow by Indicial Concepts[C].36th AIAA/ASME/ASCE/AHS/ASC Strucures,Structural Dynamics,and Materials Conference,April,1995:613~634.
  • 8[9]Lemnios A Z,Smith A F.An Analytical Evaluation of the Controllable Twist Rotor Performance and Dynamic Behavior[R].USAAMRDL Technical Report 72-16,1972:195~239.
  • 9[10]Geissler W,Sobiecaky H,Vollmers H.Numerical Study of the Unsteady Flow on a Pitching Airfoil with Oscillating Flap[C].24th European Rotorcraft Forum,September,1998:AE09-1~12.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部