期刊文献+

Riemann流形上的加权Laplace算子

Weighted Laplacian operator on Riemannian manifolds
原文传递
导出
摘要 研究了 Riem ann流形上加权 L aplace算子 L 的第一特征值的下界估计问题 ,该问题是经典 L aplace算子的第一特征值估计的自然推广。鉴于应用数学的背景 ,法国数学家 Bakry在 1987年提出该问题。运用梯度估计中一些精巧的估计方法 ,推广了黎曼流形上加权 L aplace算子的结果 ,得到了 Riemann流形上加权 L The estimate of the first eigenvalue of the weighted Laplacian operator on Riemannian manifolds is the natural generalization of the estimate of the first eigenvalue of the classical Laplacian operator. The French mathematician Bakry posed this problem in 1987 with a background of applied mathematics. This paper generalizes the known results to obtain sharp estimates of the first eigenvalue of the weighted Laplacian operator on Riemannian manifolds.
作者 贺慧霞
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第6期815-820,共6页 Journal of Tsinghua University(Science and Technology)
关键词 RIEMANN流形 加权函数 LAPLACE算子 RICCI曲率 Riemannian manifold weighted function Laplace operator Ricci curvature
  • 相关文献

参考文献11

  • 1Lichnerowitz A.Geometriedes Groups de Transformations [M].Paris:Dunod,1958.
  • 2Li P,Yau S T.Estimates of eigenvalues of a compact Riemannian manifold [J].Proc of Symp in Pure Math,1980,36:205-239.
  • 3ZHONG Jiaqing,YANG Hongcang.On the estimate of the first eigenvalue of a compact Riemannianmanifold [J].Scientia Sinica,1984,27:1265-1273.
  • 4Bakry D.Etude des transformations de Riesz dans les varietes riemannienne a courbure deRicci minoree [A].In:Seminaire de Probabilites XXI,Lecture Notes inMath,1247 [C].Berlin-Heidelberg:Springer-Verlag,1987.137-172.
  • 5Setti A G.Eigenvalue estimate for the Laplacian with the lower orderterms on a compact Riemannian manifold [J].Proc of Symp in Pure Math,Part 3,1993,54:521-527.
  • 6Setti A G.Eigenvalue estimates for weighted Laplacian on a Riemannian manifold [J].Rend Sem Mat Univ Padova,1998,100:27-55.
  • 7Obata M.Certain conditions for a Riemannian manifold to be isometric to a sphere [J].J Math Soc Japan,1962,14:33-340.
  • 8Reilly R C.Applications of the Hessian operator in a Riemannian manifold [J].Indiana Univ Math J,1977,26:459-472.
  • 9Ros A.Compact hypersurfaces with constant scalar curvature and a congruence theorem [J].J Diff Geom,1988,27:215-220.
  • 10Choi H I,Wang A N.A first eigenvalue estimate for minimal hypersurfaces [J].J Differential Geom,1983,18:559-562.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部