摘要
证明以下两个结论 :(1)当 2 |r时 ,居加数n若存在 ,则必有n≡ 1(mod6 ) ;(2 )若合数n =p1p2 …pr 满足条件r(pr -1r - (pr- 1) r-1+(p2 - 1)… (pr- 1) ) <n +1,则n不满足 1n -1+2 n -1+… +(n - 1) n -1≡ - 1(modn)。这在某种程度表明居加猜想的正确性。
Two conclusions are proved:(1)If there exists a Giuga number N with even distinct prime divisors,we have n≡1(mod6);(2)A composite number N doesn't satisfy the condition1 n-1 +2 n-1 +...+(n-1) n-1 ≡-1(modn)if N satisfies the condition r(p r-1 r-(p r-1) r-1 +(p 2-1)...(p r-1))<n+1.This indicates the correctness of Giuga's conjecture in a sense.
出处
《南京工程学院学报(社会科学版)》
2001年第2期9-10,共2页
Journal of Nanjing Institute of Technology:Social Science Edition
关键词
居加猜想
居加数
素因子
同余
Giuga's conjecture
Giuga number
prime divisor
congruence