摘要
The elliptic mild slope equation is used to simulate linear wave propagation over variable sea bed topography with mild slopes. The governing equation is discretized by the finite difference method. Based on the BI-CGSTAB technique, an attractive variant bf BI-Conjugate Gradients (BI-CG) method, the obtained linear algebraic system of equations is solved. Numerical experiments show that the BI-CGSTAB method is efficient for solving the elliptic mild slope equation. The results obtained by the BI-CGSTAB-Based method are much the same as those obtained by other authors with different solution methods, but the convergence rate is much faster than that of other methods.
The elliptic mild slope equation is used to simulate linear wave propagation over variable sea bed topography with mild slopes. The governing equation is discretized by the finite difference method. Based on the BI-CGSTAB technique, an attractive variant bf BI-Conjugate Gradients (BI-CG) method, the obtained linear algebraic system of equations is solved. Numerical experiments show that the BI-CGSTAB method is efficient for solving the elliptic mild slope equation. The results obtained by the BI-CGSTAB-Based method are much the same as those obtained by other authors with different solution methods, but the convergence rate is much faster than that of other methods.
基金
National Natural Science Foundation of China under grant No.59839330
China Postdoctoral Science Foundation