摘要
A numerical study is presented on roll damping of ships by solving Navier-Stokes equation. Two Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-like cross sections are numerically simulated by use of the computational scheme previously developed by the authors. The numerical results show that the location of the vortices is very similar to the existing experimental result. For comparison of vortex patterns and roll damping on various ship-like cross sections, various distributions of shear stress and pressure on the rolling ship hull surface are presented in this paper. It is found that there are two vortices around the midship-like section and there is one vortex around the fore or stern section. Based on these simulation results, the roll damping of a ship including viscous effects is calculated. The contribution of pressure to the roll moment is larger than the contribution of frictional shear stress.
A numerical study is presented on roll damping of ships by solving Navier-Stokes equation. Two Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-like cross sections are numerically simulated by use of the computational scheme previously developed by the authors. The numerical results show that the location of the vortices is very similar to the existing experimental result. For comparison of vortex patterns and roll damping on various ship-like cross sections, various distributions of shear stress and pressure on the rolling ship hull surface are presented in this paper. It is found that there are two vortices around the midship-like section and there is one vortex around the fore or stern section. Based on these simulation results, the roll damping of a ship including viscous effects is calculated. The contribution of pressure to the roll moment is larger than the contribution of frictional shear stress.