期刊文献+

关于有限变形非弹性有限单元法的研究进展 被引量:1

On the Research and Development of Finite Deformation In-elastic Finite Element Method
原文传递
导出
摘要 对有限变形非弹性有限单元法研究发展中的一些普遍关注的研究课题,进行了回顾和展望.这些课题包括:不同参考构形下的有限元列式、客观性应力率的合理定义、有限变形非弹性本构方程的精确描述、率本构方程的增量客观数值积分、塑性流动的不可压缩性与自锁现象、以及交界面接触与摩擦的处理. This paper reviews some of the commonly concerned topics in the research and development of finite deformation in-elastic finite element method, which include finite element formulations using different reference configurations, various objective stress rates, finite deformation in-elastic constitutive equations, incrementally objective numerical integration of rate constitutive equation, incompressibility of plastic flow and locking phenomenon, and interfacial contact and friction.
出处 《装甲兵工程学院学报》 2003年第1期4-9,共6页 Journal of Academy of Armored Force Engineering
关键词 有限变形 有限单元法 非弹性 finite deformation finite element method in-elasticity
  • 相关文献

参考文献43

  • 1[1]R. Hill, J. Mech. Phys. Solids [J], 1959, 7: 209.
  • 2[2]H. D. Hibbit, P. V. Marcal and J. R. Rice, Int. J.Solids& Struct. [J], 1970, 6: 1 069~1 086.
  • 3[3]R. M. McMeeking and J. R. Rice [J], ASME J. Appl.Mech, 1975, 11: 601~616.
  • 4[4]D. W. Murray and E. L. Wilson, J. Eng. Mech. Div.,Proc. ASCE [J], 1969, 95: 143~165.
  • 5[5]W. Wunderlich, in: Formulations and computational algorithms in finite element analysis [M], K. J. Bathe etal eds,1976, 193~240.
  • 6[6]Y. Yamada, Comput. Struct. [J], 1978, 8:533~543
  • 7[7]J. C. Nagtegaal, Comput. Meths. Appl. Mech. Engrg.[J], 1982, 33: 469~484.
  • 8[8]M. Hartzman and J. R. Hutchinson, Comput. Struct.[J], 1972, 2: 47~77.
  • 9[9]S. W. Key, Comput. Meths. Appl. Mech. Engrg.,1974, 4: 195~218.
  • 10[10]M. S. Gadalaetal, Int. J. Nonlinear Mech. [J], 1983,18: 21~35.

同被引文献37

  • 1徐连民.剪切带形成过程中的边界约束和加载速度效应[J].水利学报,2005,36(1):9-15. 被引量:7
  • 2R.I.Borja and C.Tamagnini.Cam-clay plasticity Part Ⅲ:Extension of the infinitesimal model to include finite strains[J].Comput.Methods Appl.Mech.Engrg,1998,155:73~95.
  • 3Chao Li,R.I.Borja,and R.A.Begueiro.Dynamic of porous media at finite strain[J].Comput.Methods Appl.Mech.Engrg,2004,193:3837~3870.
  • 4P.D.Kiousis and G.Z.Voyiadjis,M.T.Tumay.A large strain tbeory and its applieatian in the analysis of the cone penetration mechanism[J].Inctrnational Journal for Numerical and Anatytical Method in Geotnchnics,1988,12:45~60.
  • 5Abu-Farsakh,G.Z.Voyiadjis,M.T.Tumay.Numerical analysis of the miniature piezocone penetration test (PCPT) in cohesive soils[J].Inetrnational Journal for Numerical and Analytical Method in Geotechnics,1998,22:701~818.
  • 6G.Z.Voyiadjis and Abu-Farsakh.Coupled theory of mixtures for clayey soils[J].Computers and Geotechnics,1997,20(3/4):195~222.
  • 7W.Prager.Quart[J].Appl.Math.1961,18:403~407.
  • 8S.Im and S.N.Atluri.A study of two finite srtain plasticity models:an internal time theory using Mandel'a director concept and a general isotropic/ kinematic hardening theory[J].Int.J.Plasticity,1987,3:163.
  • 9H.C.Wu and C.C.Ho.An investigation of transient creep by means of endochronic viscoplasticity and experiment[J].ASME J.Engng.Mater.Technol.1995,117:260~267.
  • 10W.F.Pan,T.H.Lee and W.C.Yeh.Endochronic analysis for finite elastoplastic deformation and application to metal tube under torsion and metal rectangular block under biaxial comprission[J].Int.J.Plasticity,1996,12:1287.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部