期刊文献+

基于神经网络的柴油机特征参数评价与选择 被引量:1

Evaluation and Selection of Diesel Characteristics Based on Artificial Neural Network
原文传递
导出
摘要 在设备故障诊断中,正确地提取与选择特征参数对于诊断结果的有效性和准确性具有关键性的意义,在提出评价判据时样本的概率分布往往难以确定,针对模式识别中特征量的选择方法,结合人工神经网络原理,提出了利用人工神经网络进行故障特征量评价与选择的方法,实现了对柴油机特征参数的提取及选择,有效地解决了柴油机状态监测与故障诊断中测试参数多而难以优化的问题. In fault diagnosis of equipment, extracting and selecting the characteristics correctly contribute greatly to effectiveness and accuracy of diagnosis result. Due to difficulty of determining the probability distribution of the samples in defining the valuation criterion, this paper has studied the method for the valuation and selection of the fault characteristics using artificial neural network based on principles of neural network and the method for the selection of fault characteristics, and has realized the extraction and selection of the fault characteristics of diesel engine. This method can deal with the problem effectively that the characteristics to be measured are difficultly optimized in the state monitoring and fault diagnosis of diesel engine.
出处 《装甲兵工程学院学报》 2003年第3期29-32,共4页 Journal of Academy of Armored Force Engineering
关键词 模式识别 特征评价 特征选择 神经网络 柴油机 pattern recognition characteristic evaluation characteristic selection neural network diesel engine
  • 相关文献

参考文献1

  • 1[3]胡守仁,余少波,戴葵.神经网络导论[M].长沙:国防科技大学出版社,1997,113~117.

同被引文献4

  • 1杜灿谊,陆华忠,喻菲菲,覃明园.基于虚拟仪器和神经网络的汽车自动变速器故障诊断方法的研究[J].湖北汽车工业学院学报,2006,20(1):1-5. 被引量:10
  • 2Fanni A, Giua A, Sandoli E. Neural networks for multiple fault diagnosis in analog circuits [ C ]//IEEE Computer Society: Proceedings of the IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, 1993:303 -310.
  • 3Kirkland L V, Wright R G. Using neural networks to solve testing problems[J].IEEE Aerospace and Electronic Systems Magazine, 1997, 12(8) : 36 -40.
  • 4徐章遂,房立清,王希武,等.故障信息诊断原理及应用[M].北京:国防工业出版社,2002.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部