期刊文献+

含参数的广义隐拟变分包含

Parametric Generalized Implicit Quasiyariational Inclusions
下载PDF
导出
摘要 本文引入了H空间中一类关于极大η-单调映象的含参广义隐拟变分包含,利用预解算子技术讨论了这类带有集值映象的含参变分包含解集的灵敏性分析。 In this paper, we introduced a new class of parametric generalized implicit quasivariational inclusion involving maximal η-monotone mappings in H. Using the resolvent operator technique, we constructed sensitivity analysis of the solution set for the class of parametric variational inclusion with set-valued mappings.
作者 任晓
机构地区 西昌学院数理系
出处 《西昌师范高等专科学校学报》 2004年第3期110-113,共4页
关键词 含参广义隐拟变分包含 极大Η-单调映象 预解算子 灵敏性分析 parametric generalized implicit quasivariational inclusion maximal ηn-monotone mappings resolvent operator sensitivity analysis.
  • 相关文献

参考文献8

  • 1[1]M.A.Noor, Sensitity Analysis for Quasi-Variational Inclusions[J], J.Math.Anal.Appl.236(1999)290-299.
  • 2[2]Z.Liu,L.Debnath,et, Sensitity Analysis for Parametric Completely Generalized Nonlinear Implicit Quasivariational Inclusions [J], J.Math.Anal. Appl.277 (2003) 142-154.
  • 3[3]X.P. Ding, Sensitity Analysis for Generalized Nonlinear Implicit Quasi-Variational Inclusions[J], Appl. Math. Lett. 17 (2004)225-235.
  • 4[4]N.J. Huang et al., Generalized nonlinear mixed quasivariational inequalities, Comput. Math. Applic.40(2000) 205-215.
  • 5[5]N.J. Huang and Y. P. Fang, A new class of general variational inclusions involving maximal η-monotone mappings, Publ. Math. Debrecen. 62 (2003) 83-98.
  • 6[6]S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 38 (1969) 475-488.
  • 7[7]M.A. Noor, An iterative scheme for a class of quasivariational inequalities, J. Math. Anal. Appl. 110 (1985) 462-468.
  • 8[8]N.J. Huang Completely generalized nonlinear variational inclusions for fuzzy mappings. Czechoslovak. Mathematical. Journal, 49 (124)(1999) 767- 777

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部