期刊文献+

热压固结与传统液相烧结对WC-20Co-1Y_2O_3硬质合金组织结构与性能的影响 被引量:4

WC-20Co-1Y_2O_3 cemented carbide by hot-press and liquid phase sintering
下载PDF
导出
摘要 研究了低于共晶温度下热压固结与传统液相烧结对用超细原料制备的WC-20Co-1Y_2O_3硬质合金组织结构与性能的影响。研究结果表明:热压固结的合金具有组织结构致密、细小、均匀、各向同性的特点,但是合金中存在较多的钴池,采用超细原料、较高的液相烧结温度制备高钴硬质合金,合金中的稀土不能对合金中晶粒非均匀长大产生有效的抑制作用,合金晶拉组织呈现双模结构,其中粗大WC大多为极状晶,因而合金韧性较高。 The effect of hot-press at the temperature below the eutectic melting temperature and conventional liquid phase sintering on the structures and properties of WC-20Co-1Y_2O_3 cemented carbide prepared from ultrafine raw materials was studied, It is shown that hotpressed alloy has the character of fine, homogeneous and isotropic properties. However, the fine and fully-densified structure is at the cost of large amount of cobalt-lake (un-evenly-distributed binder phase). Rare earth in the alloy cannot play the role of grain growth inhibitor when cemented carbide with high content cobalt and fine raw material is sintered at high liquid phase sintering temperature, which is the reason for bi-model structure in the alloy. In the high temperature liquid phase sintered alloy, quite a part of the large grains has the character of platelet, which promises higher toughness.
出处 《粉末冶金材料科学与工程》 EI 2003年第3期179-185,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家留学基金
关键词 硬质合金 稀土 热压 组织结构 cemented carbide rare earth hot-press microstructure
  • 相关文献

参考文献10

  • 1[1]CHEN Li-min, LIN Cheng-guang, Gerhard G, et al. Rare earth (RE) doped cemented carbides [J]. P/M Science & Technology Briefs, 1999, 1(5): 11-15.
  • 2[2]Schubert W D, Neumeister H, Kinger G, et al. Hardness to toughness relationship of fine-grained WC-Co hardmetals [J]. International Journal of Refractory Metals &Hard Materials, 1998, 16: 133-142.
  • 3[3]Kinger G. A study on Palmqvist toughness testing of fine-grained WC-Co alloys [D]. Vienna: TU-Vienna, 1996.
  • 4[4]Neumeister H. The hardness/ toughness relationship of fine-grained WC-Co hardmetals [B]. Vienna: TU- Vienna,1997.
  • 5[5]Shetty D K, Wright I G, Mincer P N. Indentation fracture of WC-Co cermets[J]. Journal of Material Science, 1985,20(5) : 1873-1882.
  • 6[6]Shetty D K, Wright I G. On estimating fracture toughness of cemented carbide from Palmqvist crack sizes[J]. Journal of Material Science Letters, 1986, 5(3): 365-368.
  • 7[7]Roebuck B, Coles W. Mechanical test discriminability for WC hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 1992, 11(3) : 127-136.
  • 8[8]Sommer M, Schubert W D, Zobetz E, et al. On the formation of very large WC crystals during sintering of ultrafine WC-Co alloys [A]. Kneringer G, Rodhammer P, et al. 15th International Plansee Seminar[C]. Reutte: PLANSEE Holding AG, 2001, 4: 299-315.
  • 9[9]Kitamura K, Kobayashi M, Hayashi K. Properties of new WC-Co base hardmetal prepared from CoxWyCz complex carbide powder instead of WC+Co mixed powder[A]. Kneringer G, Rodhammer P, Wildner H. 15th International Plansee Seminar[C]. Reutte: PLANSEE Holding AG, 2001, 2: 279-294.
  • 10[10]Sch(o)n A, Schubert W D, Lux B. WC platelet-containing hardmetals[A]. Kneringer G, Rodhammer P, Wildner H.15th International Plansee Seminar[C]. Reutte: PLANSEE Holding AG, 2001, 4: 322-337.

同被引文献52

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部