期刊文献+

Spinel增强HAP·TCP复合生物材料研究

HAP·TCP composite biomaters strengthened by spinel
下载PDF
导出
摘要 采用化学共沉淀法制得羟基磷灰石(Ca_(10)(PO_4)_6(OH)_2)粉体和铝镁尖晶石(MgAl_2O_4)粉体,并以羟基磷灰石(HAP)粉体和铝镁尖晶石(Spinel)粉体为原料采用粉末冶金方法制得HAP·TCP-Spinel复合生物材料;采用X射线衍射分析、金相分析、红外光谱分析、烧结收缩性能分析和力学性能测试等对制备的材料进行了表征。研究结果表明:HAP·TCP-Spinel复合生物材料的烧结收缩率约为45%;HAP·TCP与Spine两相分布均匀,且界面结合良好;该复合材料表现出优良的抗弯强度和抗压强度性能;羟基磷灰石的含量为62.5%时该复合材料性能达到最佳,其抗弯强度和抗压强度分别为189MPa和352MPa。 Hydroxyapatite(Ca_(10) (PO_4)_6(OH)_2) powder and spinel(MgAl_2O_4) powder were prepared by sol-gel technique in this paper, and HAP · TCP-Spinel composite biomaterials was synthesized by hydroxyapatite powder and spinel powder. By X-ray diffraction, Metallography Images, Fourier transform infrared spectroscopy (FTIR), the efficiency of sintering shrinkage and mechanics performance were investigated. The experimental results show that the ratio of sintering shrinkage of HAP · TCP-spinel composite biomaterials is approximately 45%; the microstructure not only distribute equality, but the interface of hydroxyapatite and spinel combine excellently; the composite biomaterials has perfectly compressive strength and bending strength, biocompatibility and tissue bioactivity. The best of it with 62.5% of hydroxyapatite is that the compressive strength, the bending strength is 189, 352 MPa respectively.
出处 《粉末冶金材料科学与工程》 EI 2003年第4期291-298,共8页 Materials Science and Engineering of Powder Metallurgy
关键词 羟基磷灰石 铝镁尖晶石 生物材料 力学性能 hydroxyapatite spinel biomaterials mechanics performance
  • 相关文献

参考文献19

  • 1[1]Yumiko O, Minoru M, Shunichiro N. A long-term study of implanted artieial hydroxyapatite particles surrounding the carotid artery in adult dogs[J]. Biomaterials, 2000,21(5): 501-509.
  • 2[2]Spanosa N, Deimedeb V, Koutsoukosa P G. Functionalization of synthetic polymers for potentialuse as biomaterials:selective growth of hydroxyapatite on sulphonated polysulphone[J]. Biomaterials,2002,23 (3): 947 - 953.
  • 3[3]Yasuda H Y, MaHAPra S, Umakoshi Y, et al. Microstructure and mechanical property of synthesizedhydroxyapatite prepared by colloidal process[J]. Material Transactions, 2000,21 (11): 2045-2049.
  • 4[4]Spanos N, Pavlos G. Klepetsanis Y, et al. Model studies on the interaction of amino acids with biominerals: The effect of L-serine at the hydroxyapatite - Water interface[J]. Journal of Colloid and Interface Science, 2001,236 (2): 260-265.
  • 5[5]Nishikawa H, Omamiuda K. Photocatalytic activity of hydroxyapatite for methyl mercaptane[J]. Journal of Molecular Catalysis A: Chemical,2002, 179 (1): 193-200.
  • 6黄志良,王大伟,刘羽,张术根,石和彬,胥焕岩.羟基磷灰石(HAP)的制备方法及其研究进展[J].武汉化工学院学报,2001,23(3):49-53. 被引量:24
  • 7刘羽,钟康年,胡文云.溶胶-凝胶法合成条件与羟基磷灰石特征的关系[J].材料科学与工程,1997,15(1):63-65. 被引量:40
  • 8王志强,马铁成,韩趁涛,蔡英骥,吕秉玲.湿法合成纳米羟基磷灰石粉末的研究[J].无机盐工业,2001,33(1):3-5. 被引量:36
  • 9[9]Ichiro Ono M D, Tohru Tateshita M D, Nakajima T. Porous hydroxyapatite ceramics and their ability to be fixed by commercially available screws[J]. Biomaterials, 1999, 20(17) 1595-1602.
  • 10翁文杰,董天华,陈贤志,唐天驷,许立.多孔型羟基磷灰石陶瓷人工骨的生物力学性能评价[J].江苏医药,1995,21(10):677-678. 被引量:5

二级参考文献20

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部