期刊文献+

标的资产价格服从跳—扩散过程的具有随机寿命的未定权益定价 被引量:2

STOCHASTIC LIFE CONTINGENT CLAIM WITH THE UNDERLYING ASSET OBEYING JUMP-DIFFUSION PROCESS
下载PDF
导出
摘要 本文在假设被终止或取消的风险与重大信息导致的标的资产价格跳跃的风险为非系统风险的情况下 ,应用无套利资本资产定价 ,推导出了标的的资产的价格服从跳—扩散过程具有随机寿命的未定权益满足的偏微分方程 ,然后应用 Feynman- kac公式获得了未定权益的定价公式。 This paper supposes that the risk caused by stochastic stopping is nonsystematic, uses the principle of no arbitrage capital asset pricing, deduces the partial differential equation that contingent claim obeys when the underlying asset price obeys jump diffusion process and contingent claim has stochastic life; then, obtains the pricing formula by the Feynman kac formula.
出处 《经济数学》 2002年第2期21-27,共7页 Journal of Quantitative Economics
关键词 跳-扩散过程 随机寿命 未定权益 Feynman-kac公式 Jump diffusion, stochastic life, contingent claim, Feynman kac formula
  • 相关文献

参考文献5

  • 1[1]Peter, L. Jennergren. , A class of option with stochastic life and an extention of the Black-scholes formula[J]. European Journal of operational Research, 91(1996), 229- 234.
  • 2[2]Peng, S. A, A nonlinear Feynman-kac formula and application[M]. World Scientific. Singapore, 173- 184,1992.
  • 3[3]Robert, C. Merton. Option pricing when underlying stock returns are discontinuous [J]. Journal of financial economics, 3(1996), 125- 144.
  • 4[4]Black, F. and M. Scholes., The pricing of options and corporate liabilities[J]. Journal of political economy, 81(1973) ,637-659.
  • 5[5]Lamberton, D. Lapeyre B. Introducion to stochastic caculus applied to finance. Chapman and Hall,1996.

同被引文献12

  • 1谭德俊,胡宗义.收益率周期波动的股票欧式期权定价[J].经济数学,2002,19(1):39-41. 被引量:1
  • 2薛红.具有随机寿命的多维Black-Scholes定价模型[J].系统工程理论与实践,2004,24(8):44-48. 被引量:13
  • 3肖文宁,王杨,张寄洲.几何平均亚式期权定价方法的探析[J].应用数学,2005,18(2):253-259. 被引量:9
  • 4AMIN K I,JARROW R A. Pricing foreign currency options under stochastic interest rates [J]. Journal of International Money and Finance, 1991,10: 310-329.
  • 5JENNERGREN L P, NASLUND B. A class of option with stochastic lives and an extension of the Blaek-Seholes formula [J].European Journal of Operational Research, 1996,91 (2) : 229-234.
  • 6施瑞伍.金融随机分析[M].上海:上海财经大学出版社,2009.
  • 7KNOPOVA V P, PEPELYAEVA T V. Stochastic models of financial mathematics [J]. Cybernetics and Systems Analysis, 2001,37(3) : 427-433.
  • 8BLACK F,SCHOLES M. The pricing of options and corporate librlities [J]. Journal of Political Economy, 1973, 81 (3) : 637- 659.
  • 9Olay.Kallenberg,Foudations of modern probability[M].北京:科学出版社,2001.
  • 10钱敏平,龚光鲁.应用随机过程[M].北京:北京大学出版社,2003.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部