期刊文献+

几类图弱控制的广义束缚数

THE GENERAL BONDAGE NUMBER OF WEAK DOMINATION FOR SOME GRAPHS
下载PDF
导出
摘要 对任一图 G,其弱控制的束缚数 ,广义束缚数分别定义为 :bw(G) =min{ | E‖ E E(G) ,且 γw(G- E)>γw(G) } .b w(G) =min{ t| E E(G) ,如果 | E| =t,则有γw(G- E) >γw(G) } .在本文中我们给出了几类图的弱控制的广义束缚数的精确值 ,称 b w(G) =1图为弱控制去边临界图 ,并研究了正则图是弱控制去边临界图的充要条件 ,以及一般图和树的必要条件 . For any graph G,the bondage number of γ w,b w(G) is defined to be the minumum cardinality of a set of edges whose removel from G results in a graph G satisfying γ w(G)>γ w(G). the general bondage number of γ w,b w(G) is defined to be the minumum cardinality of every arbitrary set of edges whose removal from G results in graph G satisfying γ w(G) >γ w(G).We give exact values of b w(G) for some classes of graphs.And we consider the special case of b w(G),that b w(G) is equal to 1,we call G is edge-removal-critical(ER-critical).Then give necessary and sufficient condition for regular graphs to be ER-critical and necessary conditon for a tree to be ER-critical.
出处 《经济数学》 2004年第3期267-271,共5页 Journal of Quantitative Economics
基金 获教育部科学技术研究重点项目资助 (批准号 :0 2 139)
关键词 弱控制 弱控制的广义束缚数 弱控制的去边临界图 weak domination,general bondage number of γ_w,γ_w-ER-critical
  • 相关文献

参考文献4

  • 1[1]John Frederick FINK,Michaels. JACOBSON ,LaeF,KINCH and John ROBEFS,The bondage number of a graph ,Discrete Math. ,86(1990) ,47-57
  • 2[2]Gayias. Domke. Renu C. Laskar ,The bondage and reinforcement numbers of γf for some graphs,Discrete Math. , 167/168(1997) ,249-259
  • 3[3]P.J.P. Grobler. C. M. Mynhardt, Domination paramenters and edge-removal-critical graphs, Discrete Math. ,231(2001) ,221-239
  • 4[4]Dieter Rautenbach,Bounds on the strong domination number,Discrete Math. ,215(2000),201-212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部