期刊文献+

分界面厚度方法在气动光学波前失真仿真中的研究

Interfacial-thickness-method in simulation of aero-optical wavefront distortions
下载PDF
导出
摘要 将气动光学波前失真与流体力学特性联系起来,通过分界面厚度研究湍流流场物理结构和气动光学波前失真的关系.利用导弹绕流流场的计算流体力学数据,采用高折射率梯度分界面代替完整折射率场模拟流场的光学效应.将其结果和光直接传播通过原始流场所计算出的光程差比较,发现仅利用50%的折射率高梯度模拟的流场计算出的光程差与原始流场计算出的光程差具有很好的一致性.实验结果表明:高梯度分界面能较好模拟大尺度气动光学效应.折射率分界面方法对于气动光学失真的预测与校正具有一定的指导意义,也可用于控制高速流场,抑制气动光学失真的研究. The optical-wavefront distortions are related with the fluid-mechanical behavior in this paper. Interracial-Thickness-Method (ITM) is deduced fi'om eikonal equation.The turbulent re&active-index field is simulated using high-refractive-index gradient interfaces instead of the full turbulent information.In this simulation method,the turbulent flow optical behaviors are characterized by refractive index field,the interfacial physical thickness are introduced as the inverse of the refractive index gradient magnitude,and the optical wavefront distortions are quantified by the optical path difference (OPD),Modeled optical path difference (OPD) profile is compared with the full OPD profile,and it found that they agree well.The results show that large-scale aero-optical distortions emerge from high-gradient interfaces and the ITM approach is useful to simulate aero-optical effects.
作者 赵慧洁 王魁
出处 《红外与激光工程》 EI CSCD 北大核心 2006年第z1期306-311,共6页 Infrared and Laser Engineering
关键词 分界面厚度 气动光学失真 折射率分界面 光程差 Interfacial-thickness Aero-optical distortions Refractive index interface Optical path difference
  • 相关文献

参考文献7

  • 1殷兴良.现代光学新分支学科——气动光学[J].中国工程科学,2005,7(12):1-6. 被引量:16
  • 2张兆顺,崔桂香,许春晓.走近湍流[J].力学与实践,2002,24(1):1-8. 被引量:35
  • 3[3]TROLINGER J D,ROSE W C.Technique for simulation and evaluating aero-optical effects in optical system[C]//Proceedings of AIAA,2004:2004-6827.
  • 4[4]AGUIRRE R C,PLANCARTE J R,CATRAKIS H J.Physical thickness of turbulent.fluid interfaces:structure.variability,and applications to aerooptics[C]//Proceedings of AIAA,2003:2003-042.
  • 5[5]FRUMKER E,PADE O.Novel method for aero-optic evaluations[C]//Proceedings of SPIE,Infrared Technology and Applications XXVIII,2003,4820:618-626.
  • 6[6]JUMPER E J,FITZGERALD E J.Recent advances in aero-optics[J].Progress Aerospace Sciences,2001,37:299-339.
  • 7[7]HSIA Y,LIN W.CFD-based aero-optical performance prediction of a turret[C]//Proceedings of SPIE,Laser Source and System Technology for Defense and Security,2005,5792:143-154.

二级参考文献6

  • 1崔桂香,张兆顺,Michel Ayrault.圆管湍流的近壁涡结构[J].空气动力学学报,2000,18(z1):10-14. 被引量:3
  • 2Strickland B R, Lianos D P. A midcourse multipler kill vehicle defense against submunitions [ R]. AIAA 97 -3907,1997.
  • 3Foxwell D, Lok J J. Naval TBM defense matures [ A].Jane's International Defense [M]. 1998. 27~30.
  • 4Wirsig G W, Fischer D. The airborne laser-a revolution in military affairs [ J ]. Air Force Phillips Laboratory: Airborne Laser Program Newsletter,1997, 3(3): 8~12.
  • 5Pond J E, Welch C T, Sutton G W. Side mounted IR window aero-optical and aerothermal analysis [ J ].SPIE, 1999, 3705: 266~ 275.
  • 6Clark R, Banish M. Fundamentals of aero-optics phenomena (Invited) [R]. AIAA 94-2545,1994.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部