期刊文献+

一种彩色图像复原新方法:基于滑动窗口的支持向量回归算法 被引量:3

Novel color image restoration method:sliding window based support vector regression algorithm
下载PDF
导出
摘要 提出一种彩色图像复原新方法,将彩色图像按 RGB 三个通道进行分解,针对每个通道分别采用滑动窗口操作,直至遍历整幅图像,从而获得三个训练集。然后应用支持向量机进行回归分析,建立清晰图像与模糊图像之间的对应关系,从而得出彩色图像复原网络模型。最后根据该模型对待测模糊图像进行复原校正.实验结果显示新算法能很好地对模糊彩色图像进行复原,复原效果优于维纳滤波等经典滤波算法,且计算量远远小于迭代盲反卷积方法。 A novel color image restoration method is presented.Firstly,a color image is separated into RGB channels,and an operation with a sliding window is employed to each channel,thus three training sets are obtained. Then the correlation between clear image and blurry image is constructed via regression analysis of the training sets by a support vector machine,and then the model for image restoration is constructed here.Finally,the blurry images to be tested are restored by this model.The experimental results show that the proposed method is most effective in color image restoration and superior to traditional restoration methods like Wiener filtering and iterative blind deconvolution method.
出处 《红外与激光工程》 EI CSCD 北大核心 2006年第z4期79-82,共4页 Infrared and Laser Engineering
基金 上海市教委基金(05NZ20) 中国博士后科学基金(2005037503)
关键词 图像复原 支持向量回归 支持向量机 RGB色彩空间 Image restoration Support vector regression Support vector machine RGB color space
  • 相关文献

参考文献7

  • 1[1]CASTLEMAN K R.Digital Image Processing[M].Englewood Cliffs,NJ:Prentice-Hall,1996.
  • 2[2]GONZALEZ R C,WOODS R E.Digital Image Processing,2nd ed.[M].Upper Saddle River,NJ:Prentice Hall,2002.
  • 3[3]CRISTIANINI N,TAYLOR S J.An Introduction to Support Vector Machines[M].Cambridge University Press,2000.
  • 4[4]VAPNIK V.Statistical Learning Theory[M].New York:John Wiley & Sons,1998.
  • 5[5]CHAN T F,SHEN Jian-hong.Image Processing and Analysis[M].Philadelphia:Society for Industrial and Applied Mathematics,2005.
  • 6[6]SMOLA A J,SCHOLKOPF B.A Tutorial on Support Vector Regression[M].Royal Holloway College,London:Techinical Report Neuro COLT TR-1998-030,1998:73.
  • 7[7]CHANG Chih-chung,LIN Chih-Jen.Training na-support vector regression:theory and algorithms[J].Neural Computation,2002,14(8):1959-1977.

同被引文献17

  • 1王辉,杨杰,黎明,蔡念.一种基于神经网络的图像复原方法[J].红外与激光工程,2006,35(z4):121-125. 被引量:9
  • 2Gonzalez R C, Woods R E. Digital image processing [M]. Reading, Mass: Addison-Wesley, 1993: 1-3.
  • 3Chan T F, Shen Jianhong. Image processing and analysis[M]. Philadelphia, PA: SIAM, 2005: 2-5.
  • 4Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learn- ing methods [ M]. Cambridge: Cambridge University Press, 2000:93-122.
  • 5Vapnik V N. The nature of statistical learning theory [M]. Berlin: Springer-Verlag, 1995: 244-256.
  • 6Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment: from error measurement to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(1): 1-14.
  • 7Vi n a A, Gitelson A A, Nguy-Robertson A L, et al. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops [J]. Remote Sensing of Environment, 2011, 115: 3468-3478.
  • 8Knyazikhin Y, Martonchik J V, Myneni R B, et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data [J]. Journal of Geophysical Research, 1998, 103(24): 32257-32275.
  • 9Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics [J]. Remote Sensing. of Environment, 2000. 71: 158-182.
  • 10Blackburn G A, Ferwerda J G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis [J]. Remote Sensing of Environment, 2008, 112: 1614-1632.

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部