期刊文献+

一种改进的基于高斯曲率和偏微分方程的图像降噪算法 被引量:3

Improved noise removal algorithm based on Gauss curvature and PDE
下载PDF
导出
摘要 偏微分方程的图像降噪算法是一种简单有效的方法.在降噪的同时有效地保持图像的重要特征,如边缘、角点、细节等是一个重要问题。将图像的几何特征与偏微分方程的降噪算法结合起来,将图像看成三维空间的二维平面.基于高斯曲率能够有效地保持图像的重要特征,提出了一种基于高斯曲率的图像降噪的改进算法,该算法能够得到一个稳态的非平凡解,从而能够避免中止时间的选取.最后的仿真实验表明,本文算法的有效性. Image denoised algorithm based on partial differential equation is an effective and simple method. Preserving some important features such as edges,comers and details is a very important issue while image removing Geometric properties of images have been incorporated in noise-removal PDEs by regarding the intensity image as a two-dimensional surface in a three-dimensional space.An improved noise-removal algorithm is presented based on Gauss curvature to preserve image feature.It has the advantage of having a nontrivial steady state,therefore eliminating the problem of choosing a stopping time.Experimental results show theft our method is effective, compared with the algorithm based on other one.
出处 《红外与激光工程》 EI CSCD 北大核心 2006年第z4期156-159,共4页 Infrared and Laser Engineering
关键词 偏微分方程 图像降噪 高斯曲率 Partial differential equation Image denoising Gauss curvature
  • 相关文献

参考文献10

  • 1冈萨雷斯.数字图像处理(第二版)[M].北京:电子工业出版社,2003..
  • 2[2]AUBERT G,KORNPROBST P.Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations[M].Applied Mathematical Sciences,Springer-Verlag,2001.
  • 3[3]PERONA P,MALIK J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Tram Pattern Anal Machine Intell,1990,12(7):629-639.
  • 4[4]ALVAREZ L,LIONS P L,MOREL J M.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM J Numer.Anal.,1992,29(3):845-866.
  • 5[5]RUDINL,OSHERS,FATEMIE.Nonlinear total variation based noise removal algorithm[J].Phys D,1992,60:259-268.
  • 6[6]WEICKERT J.Coherence-enhancing diffusion of color image[J].Image Vis Comput,1999,17:299-210.
  • 7[7]SUK H L,JIN K S.Noise removal with gauss curvature-driven diffusion[J].IEEE Tram Image Processing,2005,14(7):904-909.
  • 8[8]SAPIRO G.Geometric partial differential equations and image processing[M].Cambridge,UK:Cambridge University Press,2001.
  • 9[9]EI-FALLAH A I,FORD G E.Mean curvature evolution and surface area scaling in image filtering[J].IEEE Trans.Image Processing,1997,6(5):750-753.
  • 10[10]CELIA A Z.A well-balanced flow equation for noise removal and edge detection[J].IEEE Trans Image Processing,2003,12(7):751-763.

共引文献15

同被引文献35

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部