期刊文献+

天际线识别在森林烟火识别中的应用 被引量:3

Automatic detection of the skyline in forest fire watch
下载PDF
导出
摘要 在森林烟火检测中,为减少烟火虚警率,需在监控图像中自动分割出森林区域。在森林区域分割过程中,首先将天空与森林区域分割开,以消除天空飞行物及云彩等的变化对烟火目标的干扰。针对这一问题,提出了一种新的基于 Mumford-Shah 泛函模型和曲线演化原理的天际线识别算法并将其应用到森林烟火识别系统中.这种算法不仅能有效地检测出具有较小梯度图像的天际线目标,而且还可直接给出天际线的曲线表示。实验数据显示算法具有良好的有效性和自适应性。 To reduce the rate of false alarm in fire watch,the forest area should be segmented.In this process, first the sky from the forest is separate in order to eliminate the effects of moving objects or the changing clouds in the sky.first,a new algorithm is presented based on both Munford-Shah model and the principle of curve evolution, and then the algorithm is applied to the system for fire watch.The algorithm not only can effectively detect the skyline with unobvious gradient image and also get directly the curve representation of the skyline at last. Experiments prove the efficiency and self-adaptation of our algorithm.
出处 《红外与激光工程》 EI CSCD 北大核心 2006年第z4期414-418,共5页 Infrared and Laser Engineering
关键词 MS模型 森林烟火检测 天际线检测 曲线演化 MS model Fire watch Skyline detection Curve evolution
  • 相关文献

参考文献8

  • 1曾孝平,刘敬,刘德,李永华,蒲秀娟.基于BP神经网络的森林火环境预测方法[J].重庆大学学报(自然科学版),2005,28(1):73-76. 被引量:11
  • 2曾文英,蔡报勤,王晓庆,王明文,殷剑敏,黄淑娥,章毅之.卫星遥感森林火点监测系统的设计与实现[J].计算机与现代化,2004(7):49-54. 被引量:4
  • 3武林,彭复员,赵坤.基于运动特征分析的森林火灾烟云实时检测方法[J].信号处理,2006,22(2):260-263. 被引量:4
  • 4[4]LI Jin,QI Qing-wen,ZOU Xiu-ping,et al.Technique for automatic forest fire surveillance using visible light image[C]//Geosciencc and Remote Sensing Symposium,2005,IGARSS'05.Proceedings,2005 IEEE International,2005,3135-3138.
  • 5[5]LAURENTIIS R D,DELLEPIANE S G,BO G.Texture features analysis for coastline extraction in remotely sensed images[C]//Image and signal Processing for Remote Sensing Ⅶ,Proceedings of SPIE,2002,4541:297-305.
  • 6[6]QU J,WANG C,WANG Z.Coastal line feature extraction method for optic remote sensing images:A threshold-based morphological approach[C]//Proceedings of IGARSS'02(Geoscience and RemoW Sensing Symposium),2002,6,3420-3422.
  • 7[7]CHAN T,VESE L A.Active contours without edges[C]//IEEE Transactions on Image Peocessing.2001,10:266-277.
  • 8[8]MUMFORD D,SHAH J.Optimal approximation by piecewise smooth functions and associated variational problem[C]//Communications on Pule and Applied Mathematics,1989,42,577-685.

二级参考文献14

  • 1王述洋,郑焕能,马岩,邢力平.大兴安岭森林火灾重烧时段周期性演变与厄尔尼诺现象、太阳黑子活动关系的研究[J].森林防火,1991(3):3-6. 被引量:7
  • 2王述洋.厄尔尼诺——南方涛动异常对森林火灾年际活动规律的影响[J].世界林业研究,1993,6(1):31-38. 被引量:9
  • 3张强,祝昌汉,陈正洪.我国森林火灾的长期预报回顾与展望[J].气象科技,1996,24(3):23-26. 被引量:2
  • 4中国科学技术大学生物医学工程跨系委员会.神经网络及其应用[M].合肥:中国科学技术大学出版社,1990..
  • 5ZAGHW A, DONG W. An Automated Approach for Selecting the Learning Rate and Momentum in Back - Propagation Networks [ J ]. Proceedings of IEEE International Conference on Neural Networks, 1994, ( 1 ) :464 - 469.
  • 6修文群.地理信息系统GIS数字化城市建设指南[M].北京:北京希望电子出版社,2001..
  • 7江西省气象局."十五"气象服务计划[DB/OL].http://www.weather.org.cn/jx_qxzw/fwjh.htm,2001-09-30.
  • 8Environmental Systems Research Institute.ESRI Shapefile Technical Description[DB/OL].http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf,1998-07-31.
  • 9MichaelNDeMers 武浩东 付宗堂 王小牛 译.地理信息系统基本原理(第2版)[M].北京:电子工业出版社,2001..
  • 10Stephen H. Boles and David L. Verbyla,“Comparison of Three AVHRR- Based Fire Detection Algorithms for Interior Alaska ”, REMOTE SENS. ENVIRON, 2000, 72,1 -16.

共引文献16

同被引文献37

  • 1吕俊伟,王成刚,周晓东,刘松涛.基于分形特征和Hough变换的海天线检测算法[J].海军航空工程学院学报,2006,21(5):545-548. 被引量:22
  • 2刘松涛,周晓东,王成刚.复杂海空背景下鲁棒的海天线检测算法研究[J].光电工程,2006,33(8):5-10. 被引量:55
  • 3Hung Y, Su C, Chang Y, et al. Skyline localization for mountain images [ C ]//IEEE International Conference on Multimedia and Expo, 2013 : 1 -6.
  • 4Lie W,Lin T C I,Lin T,et al. A robust dynamic programming algorithm to extract skyline in images for navigation[ J]. Pattern Recognition Let- ters ,2005,26 ( 2 ) :221 - 230.
  • 5Verbickas R, Whitehead A. Sky and Ground Detection Using Convolu- tional Neural Networks[ C]//International Conference on Machine Vi- sion and Machine Learning, 2014,64 (4) : 1 - 10.
  • 6Yazdanpanah A P,Regentova E E,Mandava A K,et al. Sky Segmenta- tion by Fusing Clustering with Neural Networks [ J ]. Lecture Notes in Computer Science,2013,8034 : 663 - 672.
  • 7Kim B, Shin J, Nam H, et al. Skyline Extraction using a Multistage Edge Filtering[ J]. International Scholarly and Scientific Research and Innovation ,2011,5 (7) :787 - 79.
  • 8Ahmad T, Bebis G, Regentova E, et al. A Machine Learning Approach to Horizon Line Detection Using Local Features [ J ]. Springer Berlin Heidelberg ,2013,8033:181 - 193.
  • 9Gershikov E, Libe T, Kosolapov S. Horizon Line Detection in Marine Images Which Method to Choose[ J]. International Journal on Advances in Intelligent Systems,2015,6 ( 1 and 2) :79 - 88.
  • 10Croon G C H E d,Remes B D W,Waszak C D,et al. Sky Segmentation Approach to Obstacle Awfidance[ C ]//IEEE Aerospace Conference, 2011:1 - 16.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部