期刊文献+

Si_(1-y)C_y合金薄膜中替位式C组分随生长温度的变化

Variance of Substitutional C Fraction in Si_(1-y)C_y alloy Films with the Growth Temperature
下载PDF
导出
摘要 用化学气相淀积方法,以乙烯为碳源、硅烷为硅源,在Si(100)衬底上外延生长了替位式C组分达1.22%的Si1-yCy合金薄膜,研究表明:处于替位式格点位置的C原子与Si原子成键,形成Si-C局域振动模;随着生长温度的降低,更多具有较低迁移率的C原子占据替位式格点,导致合金薄膜中的替位式C组分增加、间隙式缺陷减少,薄膜的晶体质量得到有效提高;相应地薄膜承受的张应力增大,外延层中Si(TO)声子模发生蓝移。 Si1-yCy alloy films,with the highest substitutional C fraction of 1.12%,were epitaxially deposited on Si(100) substrates via chemical vapor deposition(CVD) process,using C2H4 and SiH4 as C and Si resources,respectively.The results showed that incorporated C atoms occupying substitutional sites bind to Si atoms,and form Si-C local vibration mode(LVM).With the decrease of the growth temperature,more C atoms with lower mobility will be frozen onto substitutional sites,leading to the increase of substitutional C fraction.Accordingly,the film crystal quality improves effectively,due to the reduction of interstitial defects,and the tensile stress in epitaxial films becomes strengthened,with the blueshift of Si(TO) phonon mode.
出处 《稀有金属》 EI CAS CSCD 北大核心 2007年第z1期5-8,共4页 Chinese Journal of Rare Metals
基金 国家重点基础研究发展规划基金(2006CB604900) 国家高技术研究发展规划基金(2006AA03A103) 高等学校博士学科点专项科研基金(20050284004) 单片集成电路与模块国家级重点实验室2006年度基金(9140C1404010605)
关键词 化学气相淀积 Si1-yCy合金薄膜 Si-C局域振动模 CVD Si1-yCy alloy films Si-C LVM
  • 相关文献

参考文献12

  • 1[1]Oaten H J,Griesehe J,Scalese S.Substitutional carbon incor-poration in epitaxial Si1-yCy on Si (001) grown by molecular beam epitaxy[J].Appl.Phys.Lett.,1999,74(6):836.
  • 2[2]Lonp V,Hartmann J M,Rolland G,et al.Reduced pressure chemical vapor deposition of Si1-x-y GexCy/Si and Si1-y Cy/Si heterestructures[J].J.Vac.Sci.Technol.B,2002,20(3):1048.
  • 3[3]Oaten H J,Barth R,Fischer G,et al.Carbon-containing group Ⅳ heterostruetures on Si:properties and device applications[J].Thin Solid Films,1998,321:11.
  • 4[4]Oaten H J,Kim Mycongcheol,Pressel K,et al.Substitutional versus interstitial carbon incorporation during pseudomorphic growth of Si1-yCy on Si(001)[J].J.Appl.Phys.,1996,80(12):6711.
  • 5[5]Mi Jian,Warren Patrieia,Gailhanon Mare,et al.Epitaxial growth of Si1-x-yGexCy alloy layers on (100) Si by rapid thermal chemical vapor deposition using methylsilane[J].J.Vac.Sci.Technol.B,1996,14(3):1660.
  • 6[6]Eberl K,Iyer S S,Zollner S,et al.Growth and strain compen-sation effects in the ternary Si1-x-yGexCy alloy system[J].Ap-pl.Phys.Lett.,1992,60(24):3033.
  • 7[7]Park S Y,D'Arcy-Gall J,Gall D,et al.Carbon incorporation pathways and lattice sites in SiL1-yCy alloys grown on Si(O01) by molecular-beam epitaxy[J].J.Appl.Phys.,2002,91(9):5716.
  • 8[8]Mitchell T O,Hoyt J L,Gibbous J F.Substitutional carbon in-corporation in epitaxial Si1-yCy layers grown by chemical vapor deposition[J].Appl.Phys.Lea.,1997,71(12):1688.
  • 9[10]Tersoff J.Modeling solid-state chemistry:Interatomie potentials for multicomponent systems[J].Phys.Rev.B,1989,39:5566.
  • 10[11]Zerlauth S,Penn C,Seyringer H,et al.Molecular beam epita-xial growth and photoluminescance investigation of Si1-yCy layers[J].Thin Solid Films,1998,321:33.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部