期刊文献+

基于神经网络的多目标优化模型的模糊解法 被引量:4

Fuzzy Multi-Objective Optimization Methods Based on Functional-Link Network
下载PDF
导出
摘要 概述了多目标优化的常规解法 ,研究了多目标优化的模糊求解原理 ,提出基于函数联接神经网络的多目标优化模型的模糊解法。计算结果表明 ,函数联接神经网络不仅算法简单 ,而且具有很强的非线性插值能力 ,能较好地表达模糊集的隶属函数 ,解决了应用模糊集理论处理多目标优化问题时很难合理确定隶属函数表达式这一关键问题。 Conventional methods of solving multi-objective optimization problems are reviewed, and the principle of solving multi-objective optimization problems with fuzzy sets theory is studied. However, membership function is the key to introduce the fuzzy sets theory to multi-objective optimization, it is difficult to set up membership functions in practical engineering. On the basis of the capability of interpolation of functional-link network, discrete membership functions are used as training samples. When the network converges, the continuous membership functions implemented with the network. Membership functions based on functional-link networks have been used in multi-objective optimization.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2001年第z1期131-133,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目 ( 5 96 85 0 0 3) 中国博士后科学基金资助项目
关键词 多目标优化 模糊集 隶属函数 神经网络 multi-objective optimization fuzzy sets membership function neural network
  • 相关文献

参考文献8

  • 1[1]Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning.New York:Addison-Wesley Publishing Company,1989:63~82
  • 2[2]Fonseca C M,Fleming P J.Genetic Algorithms for Multiobjective Optimization Formulation:Discussion and Generalization.In:Forrest S ed..Proceedings of the Fifth International Conference on Genetic Algorithms.San Mateo:Morgan Kaufmann,1993:416~423
  • 3[3]Srinivas N,Deb K.Multiobjective Optimization Using Nodominated Sorting in Genetic Algorithms. Technical Report,Indian Institute of Technology,1993
  • 4[4]Quagliarella D,Vicini A.Coupling Genetic Algorithms and Gradient Based Optimization Techniques.Genetic Algorithm and Evolution Strategies in Engineering and Computer Science,Recent Advances and Industrial Applications,Michigan,1997:289~309
  • 5[5]Rao S S.Multi-objective Optimization of Fuzzy Structural Systems. International Journal for Numerical Methods in Engineering,1987,24(6):1157~1171
  • 6[6]Klassen M S,Pao Y H.Characteristics of the Functional-Link Net:a High Order Deltarule Net.IEEE Proc.of 2nd Annual International Conference on Neural Networks,Wisconsin,1988:174~193
  • 7袁中选,徐柏龄,余崇智.基于模糊统计的隶属函数神经网络实现方法[J].南京大学学报(自然科学版),1996,32(3):421-426. 被引量:1
  • 8邓斌 王金诺 等.机械工程模糊优化及多目标优化设计中的模糊综合评判[J].机械科学与技术,1996,15:13-17.

二级参考文献4

  • 1李洪兴,模糊数学,1994年
  • 2袁中选,IEEE Proc of ICASSP,1993年
  • 3贺仲雄,模糊数学及其应用,1983年
  • 4袁中选,智能计算接口与应用进展,1995年

共引文献1

同被引文献21

  • 1牟仲德,陈云.一种实用简便的球面磨削方法[J].工具技术,2005(12):79-79. 被引量:3
  • 2邓江华,刘献栋,冯国胜.基于神经网络和遗传算法的车身骨架结构优化设计[J].农业机械学报,2007,38(6):26-29. 被引量:13
  • 3CJ. Shih, T.K. Lai. Fuzzy weighting optimization with several objectivefunctions in structural design [jj.Computers and Structures. 1994, 52(5):917-924.
  • 4S.S.Rao. Multi -objective optimization of fuzzy structural systems [j].International Journal for Numerical Methods in Engineering, 1987,24(6):1157-1171.
  • 5Malkin S, Hwang T W. Grinding Mechanisms for Ceramics[J]. CIRP Annals- Manufacturing Tech- nology, 1996,45(2) :569-580.
  • 6Yin Ling, Vancoille E Y J, Lee L C, et al. High- quality Grinding of Polycrystalline Silicon Carbide Spherical Surfaces[J]. Wear, 2004,256 ( 1/2 ) : 197- 207.
  • 7Li Dongdong,Xu Mingming,Wei Chenjun,et al. Er- ror Analysis and In-process Compensation on Cup Wheel Grinding of Hard Sphere [J]- International Journal of Machine Tools and Manufacture, 2011, 51(6) :543-548.
  • 8Liao T W,Chen L J. A Neural Network Approach for Grinding Processes: Modelling and Optimization [J]. International Journal of Machine Tools and Manufacture, 1994,34(7) : 919-937.
  • 9Deng Zhaohui,Wan Linlin, Zhang Xiaohong, et al. Modelling the Processing Parameters of Rotary Curved Surface Grinding Using RSM[J]. Advanced Materials Research, 2011,338 : 130-135.
  • 10LIAO T W, CHEN L J. A neural network approach for grinding processes: modeling and optimization[J].International Journal of Machine Tools and Manufacture, 1994, 34(7): 919 -937.

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部