期刊文献+

一类时滞不确定系统传感器与执行器同时失效的容错控制设计 被引量:3

Fault tolerant control against simultaneous failures of sensor and actuator for time-delayed uncertain systems
原文传递
导出
摘要 研究线性状态时滞不确定系统传感器和执行器同时失效的容错控制问题。在Lyapunov稳定性分析的基础上,利用H∞控制设计方法和线性矩阵不等式处理方法,给出了带有时滞的状态反馈控制的设计方案。采用该方案设计的容错控制系统能够在保证系统闭环稳定的同时满足给定的H∞性能指标,而且能够减小时滞所带来的影响。通过仿真算例验证了该方法的有效性。 A fault tolerant controller was developed for uncertain time-delay systems with both sensor and actuator failures was discussed.Based on Lyapunov stability analysis and H∞ control design method,A memoryless and memory state feedback control which can decrease the influence of time delay was designed by means of the feasibility of some linear matrix inequality(LMI).The fault tolerant control system with this state feedback control can guarantee the integrity of the system together with the prescribed H∞ performance index.Simulation results on a test example are presented to validate the proposed design method.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第z2期1853-1856,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60574081)
关键词 时滞系统 容错控制 完整性 传感器故障 执行器故障 线性矩阵不等武 time-delay systems fault tolerant control integrity sensor failures,actuator failures linear matrix inequalities
  • 相关文献

参考文献5

  • 1[1]MacFarlane J.Complex Variable Methods for Linear Multivariable Feedback Systems[M].London:Taylor and Francis Ltd.1980.
  • 2[2]Cheng C,Zhao Q.Reliable control of uncertain delayed systems with integral quadratic constraints[J].IEEE Proc Control Theory Appl,2004,151(6):790-796.
  • 3[3]Yang G H,Wang J L,Soh Y C.Reliable H∞ controller design for linear systems[J].Automatica,2001,37(5):717-725.
  • 4[4]Seo C J,Kim B K.Robust and reliable H∞ control for linear systems with parameter uncertain and actuator failure[J].Automatica,1996,32(3):465-467.
  • 5[5]Lee Y S,Moon Y S,Kwon W H,et al.Delay-dependent robust H∞ control for uncertain systems with a state-delay[J].Automatica,2004,40(1):65-72.

同被引文献38

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部