期刊文献+

迭代无迹Kalman粒子滤波的建议分布 被引量:10

Particle distribution control for an iterated unscented Kalman particle filter
原文传递
导出
摘要 对非线性非Gauss系统,粒子滤波是一种有效的状态估计方法。粒子滤波的关键是建议分布的选择,好的建议分布会改进粒子贫化和样本耗尽等粒子滤波存在的普遍问题。该文用迭代无迹Kalman滤波产生粒子滤波的建议分布,提出了一种新的粒子滤波算法——迭代无迹Kalman粒子滤波。给出的建议分布将最新的观测融入样本过程并修正该过程,从而改进了滤波性能。数值模拟结果表明,提出的算法与常用的无迹粒子滤波、扩展Kalman粒子滤波相比,具有数值稳定、估计结果精确的优点。 The particle filter method is an effective nonlinear estimation method for nonlinear non-Gaussian systems.One key issue with particle filters is the particle distribution with poor distributions leading to particle impoverishment and sample size degeneracy.Here,an iterated unscented Kalman filter was used to generate the initial particle distribution for the particle filter.The particle distributions integrated the newest observations into the sampling process and modified the process to greatly improve the filter performance.Simulations show that the extended Kalman particle filter has superior stability and accuracy than the widely used unscented particle filter.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第z2期1866-1869,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"九七三"重大基础研究基金项目(2001CB309403) 西安理工大学创新计划(108-210602)
关键词 粒子滤波 迭代无迹Kalman滤波 无迹粒子滤波 非线性非Gauss particle filter iterated unscented Kalman filter unscented particle filter nonlinear/non-Gaussian
  • 相关文献

参考文献8

  • 1[1]Gordon N J,Salmond DJ,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian states estimation[J].IEEE Proc-F,Radar Signal Process,1993,140(2):107-113.
  • 2[2]Arulampalam M S,Maskell S,Gordon N.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesial tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 3[3]Van der Merwe R,Doucet A.The Unscented Particle Filter:Advances in Neural Information Processing Systems[M].New York:Wiley,2000.
  • 4[4]Goodwin G C.State and parameter estimation for linear and nonlinear systems[C/CD]//Proc of the 7th Int Conf on Control Autom,Robotics and Vision,2002:293-298.
  • 5[5]Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for filtering nonlinear systems[C]//Proceeding of the American Control Conference,American Automatic Control Council,Evanston,1995:1628-1632.
  • 6[6]Kasteua K.Finite Difference Methods for Nonlinear Filtering and Automatic Target Recognition in MutitargetMultisensor Tracking Applications and Advances[M].Bar-shalom Y,Blair W D,Norwood,MA:Artech House,2000:233-258.
  • 7[7]ZHANG Shuchun,HU Guangda,Variations of unscented Kalman filter with their applications in target tracking on re-enty[C/CD]//Proc of IEEE,the 25th Chin Control Conf,2006:407-412.
  • 8[8]Doucet A,Freitas N,Gordon N J.Sequential Monte Carlo Methods in Practice[M].New York:Springer,2001.

同被引文献66

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部