期刊文献+

基于最小二乘-支持向量机的制粉过程煤粉细度软测量模型 被引量:10

Pulverized coal particle size soft sensor based on the least squares support vector machines algorithm
原文传递
导出
摘要 煤粉细度是煤粉磨制过程控制的一个关键工艺指标,保证煤粉细度在一定范围内对于优化锅炉或回转窑的燃烧效率有着重要意义。由于煤粉细度无法在线测量,而离线化验既不能保证实时性,又容易造成煤粉泄漏污染环境,因此难以实现对煤粉细度的有效控制。该文通过对制粉过程中影响煤粉细度的因素进行分析,采用基于最小二乘-支持向量机的方法建立煤粉细度的软测量模型。通过模型误差最小的原则,确定了模型相关参数,解决了样本数量较少,常规软测量方法难以实现的问题。通过现场采集的样本数据进行的实验研究表明了该模型的有效性。 The particle size of pulverized coal is an important industry parameter in the process of pulverized coal.The particle size in the set scope is helpful to optimize of boiler or gyration kiln combustion efficiency.However the coal particle size can not be effectively controlled due to the lack of on-line instrumentation to measure particle size in real time.The influence factors on the particle size were analyzed in detail to develop a least squares support vector machine soft model to address the difficulties of size measurements with insufficient process data.The soft model was proved validity by experiment of using actual process data.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第z2期1932-1935,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2006AA04Z17) 新世纪优秀人才支持计划资助项目(NCET-05-0294)
关键词 软测量 煤粉细度 最小二乘-支持向量机 soft sensor pulverized coal particle size least squares support vector machines
  • 相关文献

参考文献7

  • 1[1]Hancke G P,Malan R.On-line particle size distribution analysis of pulverised coal[C]//Industrial Electronics,ISIE'96,Proceedings of the IEEE International Symposium on 1996,2:1066-1070.
  • 2[2]Hancke G P,Malan R.A modal analysis technique for the on-line particle size measurement of pneumatically conveyed pulverized coal[J].IEEE Transactions On Instrumentation And Measurement,1998,47(1):114-122.
  • 3[3]Casali A,Gonzalez G,Vallebuona G,et al.Grindablity soft-sensors based on lithological composition and on-line measurements[J].Minerals Engineering,2001,14(7):689-700.
  • 4[4]Gonzalez G D,Orchard M,Cerda J L,et al.Local models for soft-sensors in a rougher flotation bank[J].Minerals Engineering,2003,16(5):441-453.
  • 5[6]Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 6[7]Rameswar Debnath,Masakazu Muramatsu,Haruhisa Takahashi.An efficient support vector machine learning method with second-order cone programming for large-scale problem[J].Applied Intelligence,2005,23(3):219-239.
  • 7[8]Gestel T V,Suykens J A K,Baesens B,et al.Benchmarking least squares support vector machine classifiers[J].Machine Learning,2004,54(1):5-32.

同被引文献76

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部