期刊文献+

关于Tumura-Clunie定理的一个结果

A RESULT OF THEOREM’S TUMURA-CLUNIE
下载PDF
导出
摘要 设 f 是平面上的非常数亚纯函数 ,本文考虑了微分多项式 Ψ=anfn+an- 1 fn- 1 +Q[f]的值分布 ,其中 Q[f ]是一个次数至多为 n- 2 ,权至多为 n- 1的微分多项式。我们有 ,若lim Snpr→ +∞3N(r,Ψ ) +3N1 ) (r,f ) +2 N1 ) (r,(f +an- 1 nan) - 1 )T(r,f) <2 ,那么 ,Ψ =an(f +an- 1 nan) Let f be a nonconstant meromorphic function on the complex plane.In the paper,we consider the value distribution of a differential polynomial Ψ=a nf n+a n-1 f n-1 +Q[f],where Q[f] is a differential polynomial with degree to be at most n-2 and with weigh at most n-1,and obtain that Ψ=a n(f+a n-1 na n) n as [SX(B-4] limSnp r→+∞ 3(r,Ψ)+3N 0(r,f)+2N i(r,(f+a n-1 na n) -1 )T(r,f)<2.
作者 李伟 程英
出处 《天津科技大学学报》 CAS 2001年第2期53-56,共4页 Journal of Tianjin University of Science & Technology
关键词 亚纯函数 微分多项式 拟微分多项式 单项式 meromorphic function differential polynomial quasi differential polynomial monomials
  • 相关文献

参考文献8

  • 1[1]W.K.Hayman,Meromorphic Functions[M].Oxford,1964.
  • 2[2]J.Clunie,On integral and meromorphic functions[J].J.London Math.Soc.,1962,37,17-27.
  • 3[3]E.Mues and N.Steinmetz,The Theorem of Tumura-Clunie for meromorphic functins[J].J.London Math.Soc.1981,23,113-122.
  • 4[4]Toda,On a extension of the Theorem of Tumura-Clunie[J].Contemporaty Mathematics,1983,25,215-220.
  • 5[5]Hong-xun Yi,On the Theorem of Tumura-Clunie[J].Kodai Math.J.,1989,12:44-51.
  • 6[6]C.G.Hu and D.P.ZHang,The Stability of the Riemann boundary value problem for vector-valued M-analytic function[C].in "Partial Differential and Integral Equations”,Kluwer Academic Publishers,1999,193-205.
  • 7[7]C.G.Hu and C.C.Yang,The Nevanlinnas second fundament theorem in a Hilbevt Space[C].in "Recen Developments in Complex Analysis and Computer Algebra”,Kluwer Academic Publishers,1999,374-384.
  • 8[8]J.M.Isidro and I.I.Stacho,Holomorphic Automorphism Graups in Banach Spaces[M].North-Holland Methematics Studies 105,Amsterdam,New York,Oxford,1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部