期刊文献+

主动贝叶斯分类方法研究 被引量:1

Study of an Active Bayesian Classifier Method
下载PDF
导出
摘要 在对实际数据进行分类求解时,往往会遇到大量未带类别标注的样本,现有的经典分类方法常采用先标注缺失样本,再进行分类,存在耗时且分类精度差等问题.为此,提出一种基于主动学习思想贝叶斯分类方法RANB. 引入主动学习旨在减少评价样本所需代价,提高分类器性能. RANB方法在主动学习策略的基础上融入条件熵和分类损失的思想,可以有效抑制不确定样本所带来的误差.实验表明,该方法与朴素贝叶斯分类器等经典方法相比,在保证分类性能的前提下,可有效地减少学习所需的样本数量,尤其是对于未带类别标志的样本,更是有其优越性.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第z2期47-51,共5页 Journal of Computer Research and Development
基金 安徽省自然科学基金项目(050420207)
  • 相关文献

参考文献9

  • 1[2]K Nigam,M cCallum A,Th run S,et al.Text classification from labeled and unlabeled documents using EM.Machine Learning,2000,39(2):103-134
  • 2[3]A Blum,T Mitchell.Combining labeled and unlabeled data with co-training.In:Proc of the 11th Annual Conf on Computational Learning Theory.San Francisco:Morgan Kaufmann Publishers,1998.92-100
  • 3[4]T Joachims.Transductive inference for text classification using support vector machines.In:Proc of the 16th Int'lConf on Machine Learning.San Francisco:Morgan Kaufmann Publishers,1999.200-209
  • 4[5]Ji Shihao,B Krishnapuram,L Carin.Variational Bayes for continuous hidden Markov models and its application to active learning.IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(4):522-532
  • 5赵悦,穆志纯.基于委员会投票选择方法的主动学习的研究[J].太原理工大学学报,2006,37(4):469-472. 被引量:7
  • 6[7]B Gu,F Hu,H Liu.Sampling:Knowing Whole from Its Part,Boston:Kluwer Academic,2001.21-38
  • 7宫秀军,孙建平,史忠植.主动贝叶斯网络分类器[J].计算机研究与发展,2002,39(5):574-579. 被引量:37
  • 8[9]N A Syed,H Liu,K K Sung.A study of support vectors on model independent example selection.ACM SIGKDD Int'lConf on Knowledge Discovery and Data Mining,New York,1999
  • 9[10]Huan Liu,Hiroshi Motoda,Lei Yu.A selective sampling approach to active feature selection.Department of Computer Science & Engineering Arizona State University Artificial Intelligence,2004,159(1-2):49-74

二级参考文献11

  • 1史忠植.知识发现[M].北京:清华大学出版社,2000..
  • 2Melville P,Mooney R J.Diverse Ensembles for Active Learning[C].Proceedings of the 21st International Conference on Machine Learning,Banff,2004.
  • 3McCallum A K,Nigam K.Employing EM and pool-based active learning for text classification[C].Proceeding of the 15th International Conference on Machine Learning,Madison:Morgan Kaufmann,1998:350-358.
  • 4Argamon-Engleson S,Dagan I.Committee-based sample selection for probabilistic classifers[J].Journal of Artificial Intelligence Research,1999,11:335-460.
  • 5Souvannavong F,Merialdo B,Huet B.Partition sampling:an active learning selection strategy for large database annotation[C].IEE Proc Vis Image Signal Process,2005:347-355.
  • 6Cohn D A,Ghahramani Z,Jordan M I.Active Learning with statistical models[J].Journal of Artificial Intelligence Research,1996,4:129-145.
  • 7Lewis D D,Gale W A.A sequential algorithm for training text classifiers[C].Proceedings of {SIGIR}-94,17th {ACM} International Conference on Research and Development in Information Retrieva,Dublin:Springer Verlag,1994:3-12.
  • 8Seung H S,Opper M,Sompolinsky H.Query by committee[C].Proceedings of the 15th Annual ACM Workshop on Computational Learning Theory,California:Morgan Kaufmann,1992:287-294.
  • 9Freund Y,Seung H S,Samir E,et al.Selective sampling using the Query By Committee algorithm[J].Machine Learning,1997,28:133-168.
  • 10Friedman N,Geiger D,Goldszmidt M.Bayesian network classifiers[J].Machine Learning,1997,29:131-161.

共引文献41

同被引文献13

  • 1Yang Jianwu, Cheung W K, Chen Xiaoou. Integrating element and term semantics for similarity-based XML document clustering[ C ]//Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence. 2005: 222-228.
  • 2Sanz I, Berlanga R, Mesiti M, et al. ArHeX: Flexible composition of indexes and similarity measures for XML [ C ]// Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering Workshop. 2007:281-284.
  • 3Mezghani N, Mitiche A, Cheriet M. Bayes classification of online Arabic characters by Gibbs modeling of class conditional densities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2008,30 ( 7 ) : 1121-1131.
  • 4Xiangrong Shi ,Jun Liang,Lubin Ye,et al. A method of fault diagnosis based on PCA and Bayes classification[ C]//Proceedings of the 2010 8th World Congress on Intelligent Control and Automation(WCICA). 2010:5628-5631.
  • 5Iqbal K, Asghar S, Fong S. Hiding sensitive XML association rules via Bayesian network [ C ]//Proceedings of the 2010 6th International Conference on Advanced Information Management and Service(IMS). 2010:466-471.
  • 6Chang C C, Lu Hsueh-Ming. Integration of heterogeneous medical decision support systems based on Web services [ C ]//Proceedings of the 2009 Ninth IEEE International Conference on Bioinformatics and Bioengineering. 2009: 415-422.
  • 7阎红灿,王淑芬,朱晓亮,李敏强,刘保相.基于TreeMiner算法的XML文档结构相似度量方法[J].计算机应用研究,2009,26(5):1706-1709. 被引量:2
  • 8刘喜平,万常选.有效的XML检索结果的相似性度量[J].南京大学学报(自然科学版),2009,45(5):629-637. 被引量:3
  • 9余宏,万常选.基于XML的检索结果聚类方法[J].计算机工程,2010,36(1):85-86. 被引量:5
  • 10朴勇,田伟,王秀坤.一种XML文档结构相似度计算方法[J].控制与决策,2010,25(4):497-501. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部