摘要
在时间序列挖掘工作中,比如聚类和分类,需要计算距离来衡量时间序列样本之间的相似性,有许多研究都致力于时间序列相似性度量的研究.充分利用非线性趋势特征来进行时间序列挖掘.首先计算时间序列的ACF,进而构造ACF的非线性趋势特征,利用该特征作为时间序列相似性度量来进行聚类,它给时间序列平稳性的判定提供了一种新的途径.列举了一个模拟数据和一个实际数据来进行实例验证,实验结果表明,ACF非线性趋势特征作为一种新的相似性度量,相对已有的一些相似性度量而言,ACF非线性趋势特征通常只需计算少量的若干特征值就能更合理地刻画时间序列的平稳性特征.借助K-means进行聚类实验.
出处
《计算机研究与发展》
EI
CSCD
北大核心
2007年第z2期111-116,共6页
Journal of Computer Research and Development
基金
国家"九八五"工程二期基金项目(0000-X07204)