期刊文献+

非线性模糊直接鲁棒自适应控制的后推设计

Study on robust backstepping control of nonlinear systems based on novel fuzzy direct approach
下载PDF
导出
摘要 采用模糊直接控制方法,针对一类非线性多入多出系统,提出了一种带有连续鲁棒项的鲁棒自适应控制方法.在此基础给出了高阶多入多出系统的鲁棒自适应的后推设计方法.在鲁棒项合理简化的情况下,给出了系统Lyapunov意义下的稳定性证明,简略分析了各设计参数的物理意义及其对系统性能的影响.理论分析和仿真实验均显示,本方法可以使系统全局渐近稳定,且选取恰当的设计参数可保证系统对输入信号的跟踪达到任意精度;并且由于鲁棒项的引入可使系统的设计更具灵活性. Focuses on robust adaptive control of strict-feedback nonlinear systems using fuzzy direct method Puts forward a novel fuzzy direct adaptive scheme, which includes a continuous sigmoid function as robust terms for a kind of first-order multi-input/multi-output (MIMO) systems Makes an extension to high-order nonlinear system using backstepping design The stability is proved using Lyapunov theories based on the suitable simplification of the robust terms The result suggests that all the tracking errors in closed-loop system can converge into an arbitrary small compact set globally and asymptotically if the designing parameters are given suitably Besides, the system design is flexible because of the robust terms introduced Studies a simply simulation to illustrate the effectiveness of the proposed approach
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2003年第4期421-425,共5页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 鲁棒自适应控制 后推法设计 LYAPUNOV稳定性 模糊直接法 robust adaptive control backstepping Lyapunov stable theories fuzzy direct method
  • 相关文献

参考文献13

  • 1[1]KNOHL T, UNBEHAUEN H. ANNNAC extension of adaptive backstepping algorthm with artificial neural networks[J]. IEE Proc-control theory appl., 2000, 147(2): 177-183.
  • 2[2]KANELLAKOPOULOS I, KOKTOVIC P V, MORSE A S. Systematic design of adaptive controller for feedback linearizable system[J]. IEEE Trans. Automatic control. 1991, 36(11): 1241-1253.
  • 3[3]FREEMAN R A. Robustness of adaptive nonlinear control to bounded uncertainted[J]. Atomatica, 1998(34): 1227-1230.
  • 4[4]YIP P P. Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear system[J]. Int. J. Control, 1998, 71(5): 959-979.
  • 5[5]CHOI J Y, FARRELL J A. Adaptive observer backstepping control using neural networks[J]. IEEE Trans. Neural networks, 2001, 12(5): 1103-1112.
  • 6[6]KWAN C, LEWIS F L. Robust backstepping control of nonlinear systems using neural networks[J]. IEEE Trans. System, man and cybernetics part A, 2000, 30(6): 753-765.
  • 7[7]HORNIK K, STINCHORNBE M, WHITE H. Multilayer feed forward networks are universal approximators[J]. Neural Networks, 1989, 2: 359-366.
  • 8[8]SCARSELLI F, TSOI A H. Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results[J]. Neural Networks, 1998, 11(1): 15-37.
  • 9[9]Zhang Y, Peng P Y, Jiang Zh P. Stable neural controller design for unknown nonlinear systems using backstepping[J]. IEEE Trans. neural networks, 2000, 11(6): 1347-1360.
  • 10王立新.自适应模糊系统与控制--设计与稳定性分析[M].北京:国防工业出版社,2000..

二级参考文献6

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部