期刊文献+

Isotropic bodies and Bourgain's problem 被引量:6

Isotropic bodies and Bourgain's problem
原文传递
导出
摘要 Let K (?) Rn be a convex body of volume 1 whose barycenter is at the origin, LK be the isotropic constant of K. Finding the least upper bound of LK , being called Bourgain's problem, is a well known open problem in the local theory of Banach space. The best estimate known today is LK < cn1/4 log n, recently shown by Bourgain, for an arbitrary convex body in any finite dimension. Utilizing the method of spherical section function, it is proven that if K is a convex body with volume 1 and r1Bn2 (?) K (?) r2Bn2,(r1≥1/2, r2≤(?)/2), then (?) ≤ (?) and find the conditions with equality. Further, the geometric characteristic of isotropic bodies is shown. Let K ( ) Rn be a convex body of volume 1 whose barycenter is at the origin,LK be the isotropic constant of K. Finding the least upper bound of LK, being called Bourgain's problem, is a well known open problem in the local theory of Banach space.The best estimate known today is LK < cn1/4 log n, recently shown by Bourgain, for an arbitrary convex body in any finite dimension. Utilizing the method of spherical section function, it is proven that if K is a convex body with volume 1 and r1Bn2 ( )K ( ) r2 Bn2, (r1 ≥1/2, r2 ≤ -√n/2), then1/√2πe ≤ LK ≤ 1/2√3,and find the conditions with equality. Further,the geometric characteristic of isotropic bodies is shown.
出处 《Science China Mathematics》 SCIE 2005年第5期666-679,共14页 中国科学:数学(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grant No.10271071).
关键词 convex body isotropic body isotropic constant Bourgain’s problem spherical section function. convex body, isotropic body, isotropic constant, Bourgain's problem, spherical section function.
  • 相关文献

参考文献3

  • 1Ulrich Brehm,Peter Hinow,Hendrik Vogt,Jürgen Voigt.Moment inequalities and central limit properties of isotropic convex bodies[J].Mathematische Zeitschrift.2002(1)
  • 2A. A. Giannopoulos,V. D. Milman.Extremal problems and isotropic positions of convex bodies[J].Israel Journal of Mathematics.2000(1)
  • 3John,F.Polar correspondence with respect to convex regions, Duke Math[].J.1937

同被引文献44

  • 1何斌吾,冷岗松.迷向体与Bourgain问题[J].中国科学(A辑),2005,35(4):450-462. 被引量:12
  • 2柏世松,何斌吾.凸体几何中几个猜想的等价性[J].上海大学:自然科学版,2010,16(3):257-261.
  • 3MILMAN V, PAJOR A. Isotropic position and inertia ellipsoids and zonoinds of the unit ball of a normed n- dimensional space[J]. Geom Funet Anal, Lecture Notes in Math, 1989,1376 : 64-104.
  • 4LUTWAK E, YANG D, ZHANG G. A new ellipsoid associated with convex bodies[J]. Duke Math J,2000, 104(3) :375-390.
  • 5BASTERO J, GALVE F. PENA A, et al. Inequali- ties for the gamma function and estimates for the vol- ume of sections of Bp^n [J]. Proc Amer Math Soc, 2001, 130(1) : 183-192.
  • 6BOURGAIN J, KLARTAG B, MILMAN V. A reduc- tion of the slicing problem to finite volume ratio bodies [J]. C R Acad Sci Paris: Ser 1,2003,336:331-334.
  • 7BOURGAIN J, KLARTAG B, MILMAN V. Symme- trization and isotropic constants of convex bodies[J]. Geom Funct Anal, Lecture Notes in Math, 2004,1850 : 101-116.
  • 8陈巧云,何斌吾.凸体迷向条件的等价性[J].上海大学:自然科学版,2006,12(5):481-483.
  • 9KLARTAG B. An isomorphic version of the slicing problem[J]. Funet Anal, 2005,218 : 372-394.
  • 10KLARTAG B. On convex perturbations with a bound-ed isotropic constant[J]. GAFA Geom Funct Anal, 2006,16(6) : 1274-1290.

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部