期刊文献+

基于分形的大气湍流随机相位屏数值模拟 被引量:2

Numerical Simulation of Phase Screen Distorted by Atmospheric Turbulence Based on Fractal Theory
下载PDF
导出
摘要 激光大气传输湍流效应是制约合成孔径激光雷达高质量成像的重要因素之一,对大气湍流统计特性进行了研究,建立了大气湍流随机相位屏分形模型,使用随机中点位移法进行模拟,分别产生了符合Kolmogorov及non-Kolmogorov统计规律的湍流相位屏.通过计算模拟相位屏的相位结构函数,与理论值比对,验证模拟相位屏的准确性,并与现有的谱反演法和结构函数法进行了对比,分析了各自的优缺点。结果表明,基于分形方法产生的相位屏与理论值更加接近,效果良好。 Accurately simulating the effect of atmospheric turbulence on the laser beams will improve the imaging ability of practical synthetic aperture ladar.A formalism to model the phase screen(PS) distorted by atmospheric turbulence based on fractal theory is provided.The random midpoint motion(RMM) algorithm is introduced and used to simulate the phase screens corresponding to Kolmogorov and non-Kolmogorov turbulence respectively.Simulation accuracy evaluation is carried out by comparing the phase structure function and the theoretical results.Power spectrum method and structure function method are also used. Results show that RMM algorithm can give a better approximation to the theoretical value.
出处 《大气与环境光学学报》 CAS 2009年第3期171-177,共7页 Journal of Atmospheric and Environmental Optics
基金 国家重点基础研究发展计划(973计划)资助项目(2009CB723903)
关键词 大气湍流 数值模拟 分形布朗运动 atmospheric turbulence numerical simulation fractional Brownian motion
  • 相关文献

参考文献1

二级参考文献15

  • 1梅海平,吴晓庆,饶瑞中.不同地区大气光学湍流内外尺度测量[J].强激光与粒子束,2006,18(3):362-366. 被引量:10
  • 2Strohbehn J W.Laser beam propagation in the atmosphere[M].Berlin,Heidelberg:Springer-Verlag,1978:13.
  • 3Pinton J F,Plaza F,Danaila L,et al.On velocity and passive scalar scaling laws in a turbulent swirling flow[J].Physica D,1998,122:187-201.
  • 4Rao C H,Jiang W H,Ling N.Adaptive-optics compensation by distributed beacons for non-Kolmogorov turbulence[J].Applied Optics,2001,40(21):3441-3449.
  • 5Rao C H,Jiang W H,Ling N.Atmospheric characterization with Shack Hartmann wavefront sensors for non-Kolmogorov turbulence[J].Opt Eng,2002,41(2):534-541.
  • 6Lazorenko P F.Differential image motion at non-Kolmogorov distortions of the turbulent wave-front[J].Astronomy and Astrophysics,2002,382:1125-1137.
  • 7Tatarskii V I.湍流大气中波的传播理论[M].北京:科学出版社,1978.
  • 8Rao R Z.Description and measurement of the strength of an optical turbulence[C]//Proc of SPIE.2004,5572:45-48.
  • 9Donoho D.About wavelab[EB/OL].http://www-stat.stanford.edu/~wavelab,1999.
  • 10Frisch U.Turbulence[M].Cambridge:Cambridge University Press,1995.52.

共引文献6

同被引文献18

  • 1陈宝平,赵俊岚,尹志凌.双线性插值算法的一种快速实现方式[J].北京电子科技学院学报,2004,12(4):21-23. 被引量:21
  • 2张慧敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究[J].光电工程,2006,33(1):14-19. 被引量:46
  • 3J A Vieceli. Functional representation of power law random fields and times series[J]. J Comp Phys, 1991, 95(1): 29-39.
  • 4B L McGlamery. Restoration of turbulence-degraded images[J]. J Opt Soc Am, 1996, 57(3): 293-297.
  • 5J N Robert. Zerniek polynomial and atmospheric turbulence[J]. J Opt Soc Am, 1976, 66(3): 207-211.
  • 6R Nicoles. Atmospheric wavefront simulation using Zernike polynomials[J]. Opt Eng, 1990, 29(10): 1174-1180.
  • 7R G Lane, A Glindemann, J C Dainty. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224.
  • 8V Sriram, D Kearney. An ultra fast Kolmogorov phase screen generator suitable for parallel implementation[J]. Opt Express, 2007, 15(21) : 13709-13714.
  • 9Zhiling Jiang, Yang Dai, Faquan Li, et al. Numerical simulation of Shack-Hartmann wavefront sensor to characterize turbulence phase statistics[J]. Optics and Lasers in Engineering, 2005, 44 (5) : 466-478.
  • 10吴晗玲,严海星,李新阳,李树山.基于畸变相位波前分形特征产生矩形湍流相屏[J].光学学报,2009,29(1):114-119. 被引量:22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部