期刊文献+

A-扩张Lie Rinehart代数的证明及其应用

The Proof and Application of A-Expanding Lie Rinehart Algebra
下载PDF
导出
摘要 本文简单介绍Lie Rinehart代数的范畴和关于一个有幺,交换,结合代数A的光滑流形的概念.我们特别指出一种叫做A-扩张代数的代数,以及作用代数都可以实现为李群上的A-左不变向量场所构成的空间.这是通常的李代数与李群关系的推广. In this thesis,we introduce the contents of Lie Rinehart algebra and such manifolds that connect to combinatory and abelian A algebra which has and unit.Especially we point out another algebra-A expanding algebra as well as the vector space which are constitutes of A left invariant vector field.This left invariant vector field can be achieved on Lie group by algebra.This is the spread of the relationship between Lie algebra and Lie group.
作者 张黎明
出处 《青海师范大学学报(自然科学版)》 2009年第3期1-6,共6页 Journal of Qinghai Normal University(Natural Science Edition)
关键词 LieRinehart代数 A-扩张代数 作用代数 李群 李代数 lie rinehart algebra A-expanding algebra action algebra lie group lie algebra
  • 相关文献

参考文献10

  • 1Kastler,D,Stora,R.Lie-Cartan pairs[].JGeonand Physics.1985
  • 2Pradines,J.Théorie de Lie pour lesgroupo des différentiables.dans la catégoriedes groupi des infinitésimaux[].CRAcadSciPar-is série A:.1967
  • 3Gerstenhaber,M,,Schack,S.D.Algebras,bialgebras,quantum groups and algebraic deformations[].Defornation theory andquantum groups with applications to mathematical physics.1992
  • 4Higgins,P.J,Mackenzie,K.Duality for base-changing morphisms of vector bundles,modules,Lie algebroids and Poisson bun-dles[].MathProcCarnbridge PhilosSoc.1993
  • 5Higgins P J,Mackenzie K.Algebraic constructions in the category of lie algebroids[].Journal of Algebra.1990
  • 6C M de BARROS.Espaces Infinitéimaux[]..1965
  • 7C M de BARROS.Opérateurs infinitésimaux sur l‘algébre des forms différentielles extérieures[].Acad Sci Paris.1965
  • 8Bkouche R.Strucutures(K,A)-linéaires[].CRAcadSciParisSerA.1966
  • 9Kosmann-Schwarzbach,Y.,Mackenzie,K.Differential operators and actions of Lie algebroids[].Contemporary Mathematics.2002
  • 10Kosmann-Schwarzbach,Y.,Magri,F.Poisson-Nijenhuis structures[].Ann Inst H Poincaré Phys Théor.1990

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部