期刊文献+

分数阶微分方程多点边值问题的正解 被引量:9

Positive Solutions for Multiple-Point Boundary Value Problem of Fractional Differential Equations
下载PDF
导出
摘要 研究分数阶微分方程多点边值问题正解的存在性,利用动点定理,得到了边值问题至少存在1个正解和3个正解的充分条件. This paper deals with the existence of positive solutions for multiple-point boundary value problem of fractional differential equations.In light of fixed-point theorems,some sufficient conditions are obtained to guarantee the existence of at least one or three positive solutions of the boundary value problems.
作者 钟文勇
出处 《吉首大学学报(自然科学版)》 CAS 2010年第1期9-12,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 湖南省自然科学基金资助项目(09JJ6010)
关键词 分数阶微分方程 多点边值问题 正解 不动点 fractional differential equations multi-point boundary value problem positive solutions fixed-point theorem
  • 相关文献

参考文献6

  • 1PODLUBNYI.Fractional Differential Equations,Mathematics in Science and Engineering[]..1999
  • 2BAI Z.On Positive Solutions of a Nonlocal Fractional Boundary Value Problem[].Nonlinear Analysis.2010
  • 3SALEM H A H.On the Fractionalm-Point Boundary Value Problemin Reflexive Banach Space and the Weak Topolo-gies[].Journal of Computational and Applied Mathematics.2009
  • 4Leggett R W,Williams L R.Multiple positive fixed points of nonlinear operators on ordered Banach spaces[].Indiana University Mathematics Journal.1979
  • 5Bai,Z. B.,Lü,H. S.Positive solutions for boundary value problem of nonlinear fractional differential equation[].Journal of Mathematical Analysis and Applications.2005
  • 6Krasnoselskii M.A.Positive solutions of operator equations[]..1964

同被引文献77

  • 1LiHongyu,SunJingxian.POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS[J].Annals of Differential Equations,2005,21(2):153-160. 被引量:19
  • 2郭大钧,孙经先.抽象空间微分方程[M].济南:山东科学技术出版社,1989.1~110
  • 3Killbas A A, Srivastava H M,Trujillo J J. Theory and Application of Fraction Differential Equation [M]. North-Holland Mathematic Studies 204.Amsterdam.. Elsevier Science B V, 2006.
  • 4Oldham K B, Spanier J.The Fractional Calculus[M]. New York, London: Academic Press,1974.
  • 5Tatom F B. The relationship between fraction calculus and fractals [J]. Fractals, 1995, 3: 217-229.
  • 6Samko S G , Kilbas A A, Marichev O I. Fractional Integral and Derivatives(Theorey and Applica- tiona) [M]. Switzerland: Gordon and Breach, 1993.
  • 7Zhangbing Bai, Haishen Lu. Positive solution for boundary value problem of nonlinear fractional differential equation [J]. J Math Anal Appl, 2005(311): 495-505.
  • 8E1-Shahed M .Positive solutions for boundary value problems of nonlinear fractional differential equation [M]. Abs Appl Anal 2007. Article ID 10368.
  • 9S. Zhang, Positive solution for boundary value problem of nonlinear fractional differential equations, Elect [J]. Elect Diff Eqns, 2006: 1-12.
  • 10Chuanzhi Bai, Triple positive solutions for a boundary value problem of nonlinear fractional dif- ferential equation [J]. Electronic Journal of Qualitative Theory of Differential Equations 2008, 24: 1-10.

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部