摘要
The electronic structure and chemical bonding in a recently synthesized inorganic fullerene-like molecule, [CuCl]20[Cp*FeP5]12[Cu-(CH3CN) + 2Cl?]5 has been studied by a density functional approach. Geometrical optimization of the three basic structural units of the molecule is performed with Amsterdam Density Functional Program. The results are in agreement with the experiment. Localized MO’s obtained by Boys-Foster method give a clear picture of the chemical bonding in this molecule. The reason why CuCl can react with Cp*FeP5 in solvent CH3CN to form the fullerene-like molecule is explained in terms of the soft-hard Lewis acid base theory and a new concept of covalence.
The electronic structure and chemical bonding in a recently synthesized inorganic fullerene-like molecule, {[CuCl]20[Cp*FeP5]12 [Cu(CH3CN)2+ Cl-]5}, has been studied by a density functional approach. Geometrical optimization of the three basic structural units of the molecule is performed with Amsterdam Density Functional Program. The results are in agreement with the experiment. Localized MO抯 obtained by Boys-Foster method give a clear picture of the chemical bonding in this molecule. The reason why CuCl can react with Cp*FeP5 in solvent CH3CN to form the fullerene-like molecule is explained in terms of the soft-hard Lewis acid base theory and a new concept of covalence.
基金
This work was supported by the National Natural Science Foundation of China(Grant No.20041006).