摘要
Dynamics of excited m-dichlorobenzene is investigated in real time by femtosecond pump-probe method, combined with time-of-flight mass spectrometric detection in a supersonic molecular beam. The yields of the parent ion and daughter ion C6H4Cl+ are examined as a func-tion of the delay between the 270 and 810 nm femtosecond laser pulses, respectively. The life-time of the first singlet excited state S1 of m-dichlorobenzene is measured. The origin of this daughter ion C6H4Cl+ is discussed. The ladder mechanism is proposed to form the fragment ion. In addition, our experimental results exhibit a rapid damped sinusoidal oscillation over interme-diate time delays, which is due to quantum beat effects.
Dynamics of excited m-dichlorobenzene is investigated in real time by femtosecond pump-probe method, combined with time-of-flight mass spectrometric detection in a supersonic molecular beam. The yields of the parent ion and daughter ion C6H4Cl+ are examined as a function of the delay between the 270 and 810 nm femtosecond laser pulses, respectively. The lifetime of the first singlet excited state S1 of m-dichlorobenzene is measured. The origin of this daughter ion C6H4Cl+ is discussed. The ladder mechanism is proposed to form the fragment ion. In addition, our experimental results exhibit a rapid damped sinusoidal oscillation over intermediate time delays, which is due to quantum beat effects.
基金
This work was supported by the National Key Basic Research Special Funding Project(Grant No.G1999075301)
the National Natural Science Foundation of China(Grant No.20273072)
the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.K2002F2).